Patents by Inventor Hidefumi Yamamoto

Hidefumi Yamamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8399293
    Abstract: The present invention relates to the field of electronic devices and their associated driver and/or controller integrated circuits and in particular to the mechanical packaging of electronic devices and to the packaging of electronic devices and their associated driver and/or controller integrated circuits.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: March 19, 2013
    Assignee: Wafer-Level Packaging Portfolio LLC
    Inventors: Juergen Leib, Hidefumi Yamamoto
  • Publication number: 20120003791
    Abstract: The present invention relates to the field of electronic devices and their associated driver and/or controller integrated circuits and in particular to the mechanical packaging of electronic devices and to the packaging of electronic devices and their associated driver and/or controller integrated circuits.
    Type: Application
    Filed: September 13, 2011
    Publication date: January 5, 2012
    Applicant: WAFER-LEVEL PACKAGING PORTFOLIO LLC
    Inventors: Juergen Leib, Hidefumi Yamamoto
  • Patent number: 8017435
    Abstract: The present invention relates to the field of electronic devices and their associated driver and/or controller integrated circuits and in particular to the mechanical packaging of electronic devices and to the packaging of electronic devices and their associated driver and/or controller integrated circuits.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: September 13, 2011
    Assignee: Wafer-Level Packaging Portfolio LLC
    Inventors: Juergen Leib, Hidefumi Yamamoto
  • Publication number: 20100059877
    Abstract: The present invention relates to the field of electronic devices and their associated driver and/or controller integrated circuits and in particular to the mechanical packaging of electronic devices and to the packaging of electronic devices and their associated driver and/or controller integrated circuits.
    Type: Application
    Filed: June 1, 2007
    Publication date: March 11, 2010
    Applicant: SCHOTT AG
    Inventors: Juergen Leib, Hidefumi Yamamoto
  • Publication number: 20050118747
    Abstract: An object of the present invention is to provide a low-priced and highly reliable high-vacuum hermetic seal package. To this end, a method of manufacturing a hermetic seal package according to the present invention is a method of manufacturing a hermetic seal package by anodically bonding an opening of a cylindrical body for forming an outer frame and the outer edge of a flat glass plate to each other, characterized in that anodically bonded surfaces are 0.04 mm to 200 mm in width and not more than 0.20 ?m in surface roughness, the cylindrical body consists of a metal consisting of at least one of Fe, Ni and Co or an alloy or conductive ceramics mainly composed of this metal, the glass plate contains alkaline metal ions, and the quantity of inert gas permeation on bonded portions is 1.0×10?15 Pa.m3/s to 1.0×10?8 Pa.m3/s after anodic bonding.
    Type: Application
    Filed: January 22, 2003
    Publication date: June 2, 2005
    Inventors: Daisuke Fukushima, Hidefumi Yamamoto
  • Patent number: 6147843
    Abstract: In a magnetoresistive element, an underlying metal layer is formed on a substrate, and a magnetoresistive layer is formed on the underlying metal layer. The underlying metal layer has a thickness of about 0.1 to 3.0 nm.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: November 14, 2000
    Assignee: NEC Corporation
    Inventors: Hidefumi Yamamoto, Kazuhiko Hayashi, Masafumi Nakada, Jun-Ichi Fujikata, Kunihiko Ishihara
  • Patent number: 6063491
    Abstract: The invention provides a magnetoresistance effects film including (a) at least two thin magnetic films deposited on a substrate, (b) at least one thin nonmagnetic film interposed between the thin magnetic films, and (c) a thin antiferromagnetic film disposed adjacent to one of the thin magnetic films between which the thin nonmagnetic film is interposed. A bias magnetic field of one of the thin magnetic films induced by the thin antiferromagnetic film has an intensity Hr greater than a coercivity H.sub.C2 of the other of the thin magnetic films which is remote from the thin antiferromagnetic film (Hr>H.sub.C2). The thin antiferromagnetic film has a superlattice structure composed of at least two of NiO, Ni.sub.x Co.sub.1-x O(x=0.1-0.9) and CoO. A ratio of Ni relative to Co in the number of atoms in the superlattice structure is set equal to or greater than 1.0.
    Type: Grant
    Filed: March 11, 1998
    Date of Patent: May 16, 2000
    Assignee: NEC Corporation
    Inventors: Jun-Ichi Fujikata, Kazuhiko Hayashi, Hidefumi Yamamoto, Kunihiko Ishihara
  • Patent number: 6001430
    Abstract: A magnetoresistance effect film is disclosed. This magnetoresistance effect film comprises a substrate, at least two ferromagnetic thin films stacked one over the other on the substrate with a non-magnetic thin film interposed therebetween, and an antiferromagnetic thin film arranged adjacent to one of the ferromagnetic thin films. The antiferromagnetic thin film is a superlattice formed of at least two oxide antiferromagnetic materials selected from NiO, Ni.sub.x Co.sub.1-x O (0.1.ltoreq.x.ltoreq.0.9) and C.sub.o O. A biasing magnetic field Hr applied to the one ferromagnetic thin film located adjacent the antiferromagnetic thin film is greater than coercive magnetic force Hc.sub.2 of the other ferromagnetic thin film.
    Type: Grant
    Filed: October 6, 1998
    Date of Patent: December 14, 1999
    Assignee: NEC Corporation
    Inventors: Jun-ichi Fujikata, Kazuhiko Hayashi, Hidefumi Yamamoto, Kunihiko Ishihara
  • Patent number: 5989690
    Abstract: Magnetic thin films 2 and 3 are stacked on a substrate 4 with a nonmagnetic thin film 1 interposed therebetween. An antiferromagnetic thin film 5 is arranged adjacent to one magnetic thin film 3. The inequality Hc.sub.2 <Hr is satisfied between a bias magnetic field Hr of the antiferromagnetic thin film 5 and coercive force Hc.sub.2 of the other magnetic thin film 2. At least a part of the antiferromagnetic thin film 5 comprises NiMn of an fct structure. Alternatively, the antiferromagnetic thin film 5 comprises a two-layer structure composed of a CoO layer deposited on a NiO layer to a thickness between 10 and 40 angstroms.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: November 23, 1999
    Assignee: NEC Corporation
    Inventors: Jun-Ichi Fujikata, Kazuhiko Hayashi, Hidefumi Yamamoto, Kunihiko Ishihara, Masafumi Nakada
  • Patent number: 5942341
    Abstract: A magnetoresistive element includes a first magnetic layer; and laminations of a second magnetic layer, a non-magnetic layer and a third magnetic layer. The laminations are adjacent to the first magnetic layer. The second magnetic layer and the third magnetic layer have different coercive forces, wherein the first magnetic layer is selected from CoCrTa, NdFe, and alloys thereof.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: August 24, 1999
    Assignee: NEC Corporation
    Inventors: Kazuhiko Hayashi, Hidefumi Yamamoto, Jun-ichi Fujikata, Kunihiko Ishihara
  • Patent number: 5917400
    Abstract: The invention provides a magnetoresistance effects film including (a) at least two thin magnetic films deposited on a substrate, (b) at least one thin nonmagnetic film interposed between the thin magnetic films, and (c) a thin antiferromagnetic film disposed adjacent to one of the thin magnetic films between which the thin nonmagnetic film is interposed. A bias magnetic field of one of the thin magnetic films induced by the thin antiferromagnetic film has an intensity Hr greater than a coercivity H.sub.C2 of the other of the thin magnetic films which is remote from the thin antiferromagnetic film (Hr>H.sub.C2). The thin antiferromagnetic film has a superlattice structure composed of at least two of NiO, Ni.sub.x Co.sub.1-x O (x=0.1-0.9) and CoO. A ratio of Ni relative to Co in the number of atoms in the superlattice structure is set equal to or greater than 1.0.
    Type: Grant
    Filed: January 29, 1996
    Date of Patent: June 29, 1999
    Assignee: NEC Corporation
    Inventors: Jun-ichi Fujikata, Kazuhiko Hayashi, Hidefumi Yamamoto, Kunihiko Ishihara
  • Patent number: 5889640
    Abstract: A magnetoresistive element generally includes consecutively an antiferromagnetic layer, a first ferromagnetic layer, a non-mangetic layer, and a second ferromagnetic layer. Instead of the non-magnetic layer, the magnetoresistive element may include a combination of a Co layer, a non-magnetic layer, and a Co layer. The antiferromagnetic layer is made of nickel oxide, a mixture of nickel oxide and cobalt oxide, or a laminate of nickel oxide and cobalt oxide. The ferromagnetic layer has a thickness of 1 to 10 nm, and the element has a height of 0.1 to 1 um. The non-magnetic layer has a thickness of 2 to 3 nm, and the antiferromagnetic layer has a thickness of 5 to 30 nm. The magnetoresistive element has an appropriate cross point, outputs an excellent reproduced signal, and has a desirable half-width with respect to the output signal.
    Type: Grant
    Filed: September 12, 1996
    Date of Patent: March 30, 1999
    Assignee: NEC Corporation
    Inventors: Kazuhiko Hayashi, Junichi Fujikata, Hidefumi Yamamoto, Kunihiko Ishihara, Masafumi Nakada
  • Patent number: 5880911
    Abstract: The magnetoresistive effect element in accordance with the invention has several aspects. For instance, the magnetoresistive effect element includes an artificial lattice multilayered structure composed of a thin magnetic layer and a non-magnetic layer at least once successively deposited, and a bias field applying device for applying a bias magnetic field to the artificial lattice multilayered structure so that an orientation of residual magnetization of one of the thin magnetic layers having a greater coercive force than that of an adjacent thin magnetic layer, is the same as an orientation of a bias magnetic field to be applied to the artificial lattice multilayered structure. The magnetoresistive effect element provides enhanced regenerated outputs and also improves the symmetry of regenerated waveforms.
    Type: Grant
    Filed: June 25, 1997
    Date of Patent: March 9, 1999
    Assignee: NEC Corporation
    Inventors: Kunihiko Ishihara, Hidefumi Yamamoto, Kazuhiko Hayashi, Jun-Ichi Fujikata
  • Patent number: 5872502
    Abstract: A magnetoresistance effect film is disclosed. This magnetoresistance effect film comprises a substrate, at least two ferromagnetic thin films stacked one over the other on the substrate with a non-magnetic thin film interposed therebetween, and an antiferromagnetic thin film arranged adjacent to one of the ferromagnetic thin films. The antiferromagnetic thin film is a superlattice formed of at least two oxide antiferromagnetic materials selected from NiO, Ni.sub.x Co.sub.1-x O (0.1.ltoreq.x.ltoreq.0.9) and C.sub.o O. A biasing magnetic field Hr applied to the one ferromagnetic thin film located adjacent the antiferromagnetic thin film is greater than coercive magnetic force Hc2 of the other ferromagnetic thin film.
    Type: Grant
    Filed: August 31, 1995
    Date of Patent: February 16, 1999
    Assignee: NEC Corporation
    Inventors: Jun-ichi Fujikata, Kazuhiko Hayashi, Hidefumi Yamamoto, Kunihiko Ishihara
  • Patent number: 5766743
    Abstract: Magnetic thin films 2 and 3 are stacked on a substrate 4 with a nonmagnetic thin film 1 interposed therebetween. An antiferromagnetic thin film 5 is arranged adjacent to one magnetic thin film 3. The inequality Hc.sub.2 <Hr is satisfied between a bias magnetic field Hr of the antiferromagnetic thin film 5 and coercive force Hc.sub.2 of the other magnetic thin film 2. At least a part of the antiferromagnetic thin film 5 comprises NiMn of an fct structure. Alternatively, the antiferromagnetic thin film 5 comprises a two-layer structure composed of a CoO layer deposited on a NiO layer to a thickness between 10 and 40 angstroms.
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: June 16, 1998
    Assignee: NEC Corporation
    Inventors: Jun-Ichi Fujikata, Kazuhiko Hayashi, Hidefumi Yamamoto, Kunihiko Ishihara, Masafumi Nakada
  • Patent number: 5658658
    Abstract: In an artificial superlattice magnetoresistance effect element in which two or more of magnetic thin film layers having different coercive forces are stacked with intervening of a non-magnetic film layer and resistance changes depending on directions of magnetization in adjacent magnetic thin film layers by utilizing differences in the coercive forces, an anisotropy magnetic field Hk is increased by reducing a thickness of a soft magnetic layer, anisotropy in the magnetic thin film layer is obtained by forming the magnetic thin film layer in a magnetic field to thus increase the Hk, a material having large Hk is used as a soft magnetic material for the soft magnetic layer, and further the anisotropy is obtained by reducing a pattern width into 1-30 .mu.m to thus increase the Hk, whereby the resistance change is achieved in the neighborhood of a zero magnetic field and thus no bias mechanism is required.
    Type: Grant
    Filed: May 13, 1994
    Date of Patent: August 19, 1997
    Assignee: NEC Corporation
    Inventor: Hidefumi Yamamoto
  • Patent number: 5594933
    Abstract: The invention relates to a magnetoresistance material, i.e. a conductive material that exhibits magnetoresistance, which is an inhomogeneous system consisting of a nonmagnetic matrix and ultrafine particles of a ferromagnetic material such as Co or Ni--Fe--Co dispersed in the nonmagnetic matrix. With the aim of reducing deterioration of the magnetoresistance effect, an alloy or mixture of at least two metal elements selected from Cu, Ag, Au and Pt is used as the material of the nonmagnetic matrix. Optionally, the nonmagnetic matrix may contain a limited quantity of a supplementary element selected from Al, Cr, In, Mn, Mo, Nb, Pd, Ta, Ti, W, V, Zr and Ir. A film of the magnetoresistance material can be formed on a substrate, and it is optional to interpose a buffer layer between the film and the substrate and/or cover the film with a protective layer.
    Type: Grant
    Filed: June 30, 1995
    Date of Patent: January 14, 1997
    Assignee: NEC Corporation
    Inventors: Kazuhiko Hayashi, Hidefumi Yamamoto, Junichi Fujikata, Kunihiko Ishihara
  • Patent number: 5514469
    Abstract: A magnetoresistance effect element having a substrate, a buffer layer of a metal selected from the group consisting of chromium, tungsten, titanium, vanadium, manganese and their alloys which is formed on the substrate, and at least two magnetic thin layers which are laminated with interposing a non-magnetic thin layer therebetween on the metal thin layer, wherein adjacent magnetic thin layers through the non-magnetic thin layer have different coercive forces. This magnetoresistance effect element has an increased magnetoresistance ratio.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: May 7, 1996
    Assignees: Ube Industries, Ltd., Kanegafuchi Chemical Industry Co., Ltd., Nippon Steel Corporation, TDK Corporation, Tosoh Corporation, Toyo Boseki Kabushiki Kaisha, Japan Energy Corporation, NEC Corporation, Matsushita Electric Industrial Co., Ltd., Seisan Kaihatsu Kagaku Kenkyusho
    Inventors: Teruya Shinjo, Hidefumi Yamamoto, Toshihiko Anno, Toshio Takada
  • Patent number: 5462795
    Abstract: There is provided a magnetoresistance effect element comprising a substrate and at least two magnetic thin layers which are laminated with interposing a non-magnetic thin layer therebetween on said substrate, wherein adjacent magnetic thin layers through the non-magnetic thin layer have different coercive forces, characterized in that a metal thin film is provided in an interface between at least one of the magnetic layers and the non-magnetic layer which is adjacent thereto, and the metal thin film is made of a substance which is different from that of the adjacent non-magnetic layer.
    Type: Grant
    Filed: December 17, 1992
    Date of Patent: October 31, 1995
    Assignees: Ube Industries, Ltd., Nippon Steel Corporation, TDK Corporation, Tosoh Corporation, Japan Energy Corporation, NEC Corporation, Matsushita Electric Industrial Co., Ltd., Seisan Kaihatsu Kagaku Kenkyusho
    Inventors: Teruya Shinjo, Hidefumi Yamamoto, Toshihiko Anno, Toshio Takada
  • Patent number: 5315282
    Abstract: A magnetoresistance effect element including a substrate and at least two magnetic thin layers which are laminated with interposing a non-magnetic thin layer therebetween on said substrate, wherein adjacent magnetic thin layers through the non-magnetic thin layer have different coercive forces and each of the magnetic thin layers and the non-magnetic layer has a thickness of not larger than 200 .ANG., which has a large magnetoresistance ratio of several % to several ten % at a small external magnetic field of several Oe to several ten Oe and can provide a MR sensor having a high sensitivity and a MR head which achieves high density magnetic recording.
    Type: Grant
    Filed: January 21, 1992
    Date of Patent: May 24, 1994
    Assignees: Ube Industries, Ltd., Kanegafuchi Chemical Industry Co., Ltd., Nippon Steel Corporation, TDK Corporation, Tosoh Corporation, Toyo Boseki Kabushiki Kaisha, Nippon Mining Co., Ltd., NEC Corporation, Matsushita electgric Industrial Co., Ltd., Seisan Kaihatsu Kagaku Kenkyusho
    Inventors: Teruya Shinjo, Hidefumi Yamamoto, Toshio Takada