Patents by Inventor Hidehiko Kataoka

Hidehiko Kataoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8959951
    Abstract: A refrigerating apparatus, where refrigerant reaches a supercritical state in at least part of a refrigeration cycle, includes at least one expansion mechanism, an evaporator connected to the expansion mechanism, first and second sequential compression elements, a radiator connected to the discharge side of the second compression element, a first refrigerant pipe interconnecting the radiator and the expansion mechanism, a heat exchanger arranged to cause heat exchange between the first refrigerant pipe and another refrigerant pipe. Preferably, a heat exchanger switching mechanism is switchable so that refrigerant flows in the first refrigerant pipe through the first heat exchanger or in a heat exchange bypass pipe connected to the first refrigerant pipe.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: February 24, 2015
    Assignee: Daikin Industries, Ltd.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi, Takahiro Yamaguchi, Toru Inazuka, Kazuhiro Furusho, Mitsuharu Uchida, Hidehiko Kataoka
  • Publication number: 20110036110
    Abstract: A refrigeration apparatus performs heat exchange on a water tube system having a water inlet tube leading exterior water to a water branching point, first and second branching water tubes extending from the water branching point, and a water outlet tube leading to the exterior from a convergent point of the first and second branching water tubes. Active refrigerant is in a supercritical state in at least part of a refrigeration cycle. The refrigeration apparatus includes a main expansion mechanism connected to an evaporator, first and second compression elements connected by a first refrigerant tube, a first heat exchanger exchanging heat between the first refrigerant tube and the first branching water tubes, second refrigerant tubes connecting the second compression element and the main expansion mechanism, and a second heat exchanger in which the second refrigerant tubes exchange heat with the second branching water tubes and does not exchange heat with the water inlet tube.
    Type: Application
    Filed: April 28, 2009
    Publication date: February 17, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi, Takahiro Yamaguchi, Tooru Inazuka, Kazuhiro Furusho, Mitsuharu Uchida, Hidehiko Kataoka
  • Publication number: 20110036119
    Abstract: A refrigerating apparatus, where refrigerant reaches a supercritical state in at least part of a refrigeration cycle, includes at least one expansion mechanism, an evaporator connected to the expansion mechanism, first and second sequential compression elements, a radiator connected to the discharge side of the second compression element, a first refrigerant pipe interconnecting the radiator and the expansion mechanism, a heat exchanger arranged to cause heat exchange between the first refrigerant pipe and another refrigerant pipe. Preferably, a heat exchanger switching mechanism is switchable so that refrigerant flows in the first refrigerant pipe through the first heat exchanger or in a heat exchange bypass pipe connected to the first refrigerant pipe.
    Type: Application
    Filed: April 30, 2009
    Publication date: February 17, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi, Takahiro Yamaguchi, Toru Inazuka, Kazuhiro Furusho, Mitsuharu Uchida, Hidehiko Kataoka
  • Publication number: 20110011943
    Abstract: A heating installation includes a heat pump, heating fluid piping passing through a condenser of the heat pump to exchange heat between refrigerant and heating fluid, first and second objects heated by the heating fluid to first and second set temperatures, a valve switchable between first and second positions to supply heating fluid to the first and second objects, sensors detecting first and second actual temperatures at the first and second objects, and a control. The heat pump also has an evaporator, a compressor and an expansion device. The control in a demand dependent mode, is configured to determine a first demand based on the first set and actual temperatures and a second demand based on the second set and actual temperatures, and is configured to switch the valve to the first and second positions based on comparison of the first and second demands. A method for controlling a heating installation heats the first or second object based on such a comparison.
    Type: Application
    Filed: March 19, 2009
    Publication date: January 20, 2011
    Applicants: DAIKIN INDUSTRIES, LTD., DAIKIN EUROPE N.V.
    Inventors: Bart Aspeslagh, Hiroki Ochi, Hidehiko Kataoka