Patents by Inventor Hideki Imataka

Hideki Imataka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200063246
    Abstract: Steel improved in all of the hardenability, toughness, surface-originated micropitting life, and bending fatigue strength and a part manufactured using such steel are provided having predetermined constituents having an Fn1 defined by the following formula (1) of 0.20 to 0.65 and having an Fn2 defined by the following formula (2) of 0.50 to 1.00: Fn1=4.2×[Cr]/(7.0×[Si]+16.0×[Mn])??(1) [Element]: mass % of element Fn2=A1/A2??(2) A1: total area (?m2) of sulfide-based inclusions containing 1.0 mol % or more of Ca with respect to the total number of moles in the sulfides and having a circle equivalent diameter of 1.0 ?m or more in observation regions of a total area of 4.0 mm2 A2: total area (?m2) of sulfide-based inclusions having a circle equivalent diameter of 1.0 ?m or more in observation regions of a total area of 4.
    Type: Application
    Filed: May 15, 2018
    Publication date: February 27, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Tomohiro YAMASHITA, Daisuke HIRAKAMI, Yutaka NEISHI, Kosuke TANAKA, Hideki IMATAKA
  • Patent number: 10370747
    Abstract: A nitrided component has a chemical composition consisting of, by mass percent, C: 0.07-0.14%, Si: 0.10-0.30%, Mn: 0.4-1.0%, S: 0.005-0.030%, Cr: 1.0-1.5%, Mo: ?0.05% (including 0%), Al: 0.010% or more to less than 0.10%, V: 0.10-0.25%, optionally at least one element selected from Cu: ?0.30% and Ni: ?0.25%, [0.61Mn+1.11Cr+0.35Mo+0.47V?2.30], and the balance of Fe and impurities. P, N, Ti and O among the impurities are P: ?0.030%, N: ?0.008%, Ti: ?0.005%, and O: ?0.0030%. The nitrided composition is suitable for use as an automobile ring gear. The nitrided component has a surface hardness of 650-900 HV, core hardness being ?150 HV, effective case depth of ?0.15 mm, has excellent bending fatigue strength and surface fatigue strength although the content of Mo is as low as ?0.05% and has a small amount of expansion caused by nitriding.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: August 6, 2019
    Assignees: NIPPON STEEL CORPORATION, HONDA MOTOR CO., LTD.
    Inventors: Hideki Imataka, Masato Yuya, Yuya Gyotoku, Atsushi Kobayashi, Susumu Maeda
  • Patent number: 9994944
    Abstract: A steel for cold forging/nitriding has, by mass percent, C: 0.01 to 0.15%, Si?0.35%, Mn: 0.10 to 0.90%, P?0.030%, S?0.030%, Cr: 0.50 to 2.0%, V: 0.10 to 0.50%, Al: 0.01 to 0.10%, N?0.0080%, and O?0.0030%, further according to need a specific amount of one or more elements selected from Mo, Cu, Ni, Ti, Nb, Zr, Pb, Ca, Bi, Te, Se and Sb, with the balance being Fe and impurities, and further satisfying the conditions of [399×C+26×Si+123×Mn+30×Cr+32×Mo+19×V?160], [20?(669.3×logeC?1959.6×logeN?6983.3)×(0.067×Mo+0.147×V)?80], [140×Cr+125×Al+235×V?160] and [90?511×C+33×Mn+56×Cu+15×Ni+36×Cr+5×Mo+134×V?170] are excellent in cold forgeability and machinability after cold forging.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: June 12, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hideki Imataka, Masayuki Horimoto, Yusuke Usui, Yuya Gyotoku
  • Patent number: 9783879
    Abstract: A nitrided steel member including an iron nitride compound layer formed on a surface of a steel member having predetermined components, wherein: in X-ray diffraction peak intensity IFe4N (111) of a (111) crystal plane of Fe4N and X-ray diffraction peak intensity IFe3N (111) of a (111) crystal plane of Fe3N, which are measured on a surface of the nitrided steel member by X-ray diffraction, an intensity ratio expressed by IFe4N (111)/{IFe4N (111)+IFe3N (111)} is 0.5 or more; Vickers hardness of the iron nitride compound layer is 900 or less, Vickers hardness of a base metal immediately under the iron nitride compound layer is 700 or more, and a difference between the Vickers hardness of the iron nitride compound layer and the Vickers hardness of the base metal is 150 or less; and a thickness of the iron nitride compound layer is 2 to 17 ?m.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: October 10, 2017
    Assignees: DOWA THERMOTECH CO., LTD., HONDA MOTOR CO., LTD., NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuichiro Shimizu, Atsushi Kobayashi, Susumu Maeda, Masao Kanayama, Hideki Imataka, Masato Yuya, Yuya Gyotoku, Kiyotaka Akimoto
  • Publication number: 20170283922
    Abstract: A nitrided component has a chemical composition consisting of, by mass percent, C: 0.07-0.14%, Si: 0.10-0.30%, Mn: 0.4-1.0%, S: 0.005-0.030%, Cr: 1.0-1.5%, Mo: ?0.05% (including 0%), Al: 0.010% or more to less than 0.10%, V: 0.10-0.25%, optionally at least one element selected from Cu: ?0.30% and Ni: ?0.25%, [0.61Mn+1.11Cr+0.35Mo+0.47V?2.30], and the balance of Fe and impurities. P, N, Ti and O among the impurities are P: ?0.030%, N: ?0.008%, Ti: ?0.005%, and O: ?0.0030%. The nitrided composition is suitable for use as an automobile ring gear. The nitrided component has a surface hardness of 650-900 HV, core hardness being ?150 HV, effective case depth of ?0.15 mm, has excellent bending fatigue strength and surface fatigue strength although the content of Mo is as low as ?0.05% and has a small amount of expansion caused by nitriding.
    Type: Application
    Filed: June 15, 2017
    Publication date: October 5, 2017
    Inventors: Hideki IMATAKA, Masato YUYA, Yuya GYOTOKU, Atsushi KOBAYASHI, Susumu MAEDA
  • Patent number: 9777354
    Abstract: A case hardening steel material having a chemical composition consists of, by mass percent, C: 0.15 to 0.23%, Si: 0.01 to 0.15%, Mn: 0.65 to 0.90%, S: 0.010 to 0.030%, Cr: 1.65 to 1.80%, Al: 0.015 to 0.060%, and N: 0.0100 to 0.0250%, further containing, as necessary, one or more kinds selected from Cu and Ni of predetermined amounts, the balance being Fe and impurities; 25?Mn/S?85, 0.90?Cr/(Si+2Mn)?1.20, and 1.16Si+0.70Mn+Cr?2.20; P, Ti and O in the impurities being P?0.020%, Ti?0.005%, and O?0.0015%; and having a structure consisting of 20 to 70% in an area ratio being ferrite; and the portion other than the ferrite being one or more kinds of pearlite and bainite. The steel material is used suitably as a raw material of the carburized part such as a CVT pulley shaft.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: October 3, 2017
    Assignees: NIPPON STEEL & SUMITOMO METAL CORPORATION, HONDA MOTOR CO., LTD.
    Inventors: Hideki Imataka, Masayuki Horimoto, Gen Kato, Mitsuru Fujimoto
  • Patent number: 9718256
    Abstract: A steel material for nitriding has a composition comprising, by mass percent, C: more than 0.15% and not more than 0.35%, Si?0.20%, Mn: 0.10 to 2.0%, P?0.030%, S?0.050%, Cr: 0.80 to 2.0%, V: 0.10 to 0.50%, Al: 0.01 to 0.06%, N?0.0080%, O?0.0030%, and optionally one or more elements of Mo, Cu, Ni, Ti, Nb, Zr, Pb, Ca, Bi, Te, Se and Sb, the balance being Fe and impurities. The composition satisfies the conditions of [20?(669.3×logeC?1959.6×logeN?6983.3)×(0.067×Mo+0.147×V)?80] and [140×Cr+125×Al+235×V?160]. The microstructure is a ferritic-pearlitic structure, a ferritic-bainitic structure, or a ferritic-pearlitic-bainitic structure. The area fraction of ferrite is 20% or more and the precipitate content of V is 0.10% or less.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: August 1, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuya Gyotoku, Masayuki Horimoto, Hideki Imataka, Kosuke Tanaka
  • Patent number: 9574256
    Abstract: A steel comprises, by mass percent, C: 0.10 to 0.15%, Si: not less than 0.02% and less than 0.10%, Mn: more than 0.90% and not more than 2.50%, P?0.030%, S?0.050%, Cr: 0.80 to 2.0%, V: 0.05 to 0.50%, Al: 0.01 to 0.07%, N?0.0080%, O?0.0030%, and one or more selected from Mo, Cu, Ni, Ti, Nb, Zr, Pb, Ca, Bi, Te, Se and Sb, the balance being Fe and impurities. The composition satisfies [35?Mn/S?200], [20?(669.3×loge C?1959.6×loge N?6983.3)×(0.067×Mo+0.147×V)?80], [140×Cr+125×Al+235×V?160] and [150?511×C+33×Mn+56×Cu+15×Ni+36×Cr+5×Mo+134×V?200].
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 21, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hideki Imataka, Masayuki Horimoto, Yuya Gyotoku, Kosuke Tanaka
  • Patent number: 9410232
    Abstract: A method for producing a steel component by performing the treatments of the following sequentially steps 1 and 2 to a steel material containing, by mass %, C: 0.15 to 0.25%, Si: 0.01 to 0.10%, Mn: 0.50 to 0.80%, S: 0.003 to 0.030%, Cr: 0.80 to 1.20%, Mo: 0.30 to 0.45%, Al: 0.015 to 0.050%, and N: 0.010 to 0.025%, wherein Cr/Mn is 1.3 to 2.4, the balance being Fe and impurities, and contents of P and O among the impurities are P: not more than 0.010%, and O: not more than 0.0020%: step 1: a treatment which holds the steel material at a temperature of 850 to 1000° C. in a carburizing atmosphere or carbonitriding atmosphere, and step 2: a treatment which quenches the carburized or carbonitrided steel material, by using quenching oil having a temperature of 40 to 80° C. and a kinetic viscosity of 20 to 25 mm2/s at 40° C.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: August 9, 2016
    Assignees: NIPPON STEEL & SUMITOMO METAL CORPORATION, HONDA MOTOR CO., LTD.
    Inventors: Masayuki Horimoto, Hideki Imataka, Masaomi Nakaoka, Akihito Ninomiya, Yoshinari Okada
  • Patent number: 9200354
    Abstract: A rolled steel bar or a wire rod for hot forging capable of coping with both bending/surface fatigue strength of components and machinability at a high level includes: a composition containing, in mass %, C: 0.1 to 0.25%, Si: 0.01 to 0.10%, Mn: 0.4 to 1.0%, S: 0.003 to 0.05%, Cr: 1.60 to 2.00%, Mo: 0.10% or less (including 0%), Al: 0.025 to 0.05%, and N: 0.010 to 0.025%, where a value of fn1 represented in a following formula (1) satisfies 1.82?fn1?2.10: fn1=Cr+2×Mo (1); impurities containing P: 0.025% or less, Ti: 0.003% or less, and O (oxygen): 0.002% or less; and a cross section in which a maximum value/a minimum value of an average ferrite grain diameter is 2.0 or less when measurement by observation is randomly carried out in 15 visual fields with an area per visual field set to be 62500 ?m2.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: December 1, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yoshihiro Daitoh, Hideki Imataka, Masayuki Horimoto, Akira Shiga
  • Publication number: 20150125339
    Abstract: A case hardening steel material having a chemical composition consists of, by mass percent, C: 0.15 to 0.23%, Si: 0.01 to 0.15%, Mn: 0.65 to 0.90%, S: 0.010 to 0.030%, Cr: 1.65 to 1.80%, Al: 0.015 to 0.060%, and N: 0.0100 to 0.0250%, further containing, as necessary, one or more kinds selected from Cu and Ni of predetermined amounts, the balance being Fe and impurities; 25?Mn/S?85, 0.90?Cr/(Si+2Mn)?1.20, and 1.16Si+0.70Mn+Cr?2.20; P, Ti and O in the impurities being P?0.020%, Ti?0.005%, and O?0.0015%; and having a structure consisting of 20 to 70% in an area ratio being ferrite; and the portion other than the ferrite being one or more kinds of pearlite and bainite. The steel material is used suitably as a raw material of the carburized part such as a CVT pulley shaft.
    Type: Application
    Filed: April 16, 2013
    Publication date: May 7, 2015
    Inventors: Hideki Imataka, Masayuki Horimoto, Gen Kato, Mitsuru Fijimoto
  • Publication number: 20150059933
    Abstract: A steel comprises, by mass percent, C: 0.10 to 0.15%, Si: not less than 0.02% and less than 0.10%, Mn: more than 0.90% and not more than 2.50%, P?0.030%, S?0.050%, Cr: 0.80 to 2.0%, V: 0.05 to 0.50%, Al: 0.01 to 0.07%, N?0.0080%, O?0.0030%, and one or more selected from Mo, Cu, Ni, Ti, Nb, Zr, Pb, Ca, Bi, Te, Se and Sb, the balance being Fe and impurities. The composition satisfies [35?Mn/S?200], [20?(669.3×logeC?1959.6×logeN?6983.3)×(0.067×Mo+0.147×V)?80], [140×Cr+125×Al+235×V?160] and [150?511×C+33×Mn+56×Cu+15×Ni+36×Cr+5×Mo+134×V?200].
    Type: Application
    Filed: February 28, 2013
    Publication date: March 5, 2015
    Inventors: Hideki Imataka, Masayuki Horimoto, Yuya Gyotoku, Kosuke Tanaka
  • Publication number: 20150053311
    Abstract: A nitrided steel member including an iron nitride compound layer formed on a surface of a steel member having predetermined components, wherein: in X-ray diffraction peak intensity IFe4N (111) of a (111) crystal plane of Fe4N and X-ray diffraction peak intensity IFe3N (111) of a (111) crystal plane of Fe3N, which are measured on a surface of the nitrided steel member by X-ray diffraction, an intensity ratio expressed by IFe4N (111)/{IFe4N (111)+IFe3N (111)} is 0.5 or more; Vickers hardness of the iron nitride compound layer is 900 or less, Vickers hardness of a base metal immediately under the iron nitride compound layer is 700 or more, and a difference between the Vickers hardness of the iron nitride compound layer and the Vickers hardness of the base metal is 150 or less; and a thickness of the iron nitride compound layer is 2 to 17 ?m.
    Type: Application
    Filed: April 17, 2013
    Publication date: February 26, 2015
    Inventors: Yuichiro Shimizu, Atsushi Kobayashi, Susumu Maeda, Masao Kanayama, Hideki Imataka, Masato Yuya, Yuya Gyotoku, Kiyotaka Akimoto
  • Publication number: 20150027591
    Abstract: A steel material for nitriding has a composition comprising, by mass percent, C: more than 0.15% and not more than 0.35%, Si?0.20%, Mn: 0.10 to 2.0%, P?0.030%, S?0.050%, Cr: 0.80 to 2.0%, V: 0.10 to 0.50%, Al: 0.01 to 0.06%, N?0.0080%, O?0.0030%, and optionally one or more elements of Mo, Cu, Ni, Ti, Nb, Zr, Pb, Ca, Bi, Te, Se and Sb, the balance being Fe and impurities. The composition satisfies the conditions of [20?(669.3×logeC?1959.6×logeN?6983.3)×(0.067×Mo+0.147×V)?80] and [140×Cr+125×Al+235×V?160]. The microstructure is a ferritic-pearlitic structure, a ferritic-bainitic structure, or a ferritic-pearlitic-bainitic structure. The area fraction of ferrite is 20% or more and the precipitate content of V is 0.10% or less.
    Type: Application
    Filed: February 4, 2013
    Publication date: January 29, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuya Gyotoku, Masayuki Horimoto, Hideki Imataka, Kosuke Tanaka
  • Publication number: 20140363329
    Abstract: A rolled steel bar or wire rod having hot surface fatigue strength, wear resistance, and machinability even after hot forging has a composition containing C, Si, Mn, S, Cr, Mo (optional), Al, and N, with the balance being Fe and impurities. The chemical composition satisfies that fn1 defined by Formula (1) is 1.60 to 2.10. The structure of the rolled steel bar or wire rod for hot forging includes a ferrite-pearlite structure, a ferrite-pearlite-bainite structure, or a ferrite-bainite structure. A maximum value/a minimum value of average ferrite grain size, which is observed and measured randomly in 15 visual fields each having an area of 62500 ?m2 in a cross section, is not more than 2.0. fn1=Cr+2×Mo (1), and each symbol of elements in Formula (1) is substituted by a content (mass %) of a corresponding element.
    Type: Application
    Filed: August 22, 2012
    Publication date: December 11, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Akira Shiga, Masayuki Horimoto, Yoshihiro Daitoh, Hideki Imataka, Yusuke Usui, Tetsuya Ohashi
  • Publication number: 20140246126
    Abstract: A method for producing a steel component by performing the treatments of the following sequentially steps 1 and 2 to a steel material containing, by mass %, C: 0.15 to 0.25%, Si: 0.01 to 0.10%, Mn: 0.50 to 0.80%, S: 0.003 to 0.030%, Cr: 0.80 to 1.20%, Mo: 0.30 to 0.45%, Al: 0.015 to 0.050%, and N: 0.010 to 0.025%, wherein Cr/Mn is 1.3 to 2.4, the balance being Fe and impurities, and contents of P and O among the impurities are P: not more than 0.010%, and O: not more than 0.0020%: step 1: a treatment which holds the steel material at a temperature of 850 to 1000° C. in a carburizing atmosphere or carbonitriding atmosphere, and step 2: a treatment which quenches the carburized or carbonitrided steel material, by using quenching oil having a temperature of 40 to 80° C. and a kinetic viscosity of 20 to 25 mm2/s at 40° C.
    Type: Application
    Filed: October 31, 2012
    Publication date: September 4, 2014
    Inventors: Masayuki Horimoto, Hideki Imataka, Masaomi Nakaoka, Akihito Ninomiya, Yoshinari Okada
  • Publication number: 20140034194
    Abstract: A steel for nitriding having a chemical composition consisting of, by mass percent, C: 0.07-0.14%, Si: 0.10-0.30%, Mn: 0.4-1.0%, S: 0.005-0.030%, Cr: 1.0-1.5%, Mo: ?0.05% (including 0%), Al: 0.010% or more to less than 0.10%, V: 0.10-0.25%, optionally at least one element selected from Cu: ?0.30% and Ni: ?0.25% [0.61Mn+1.11Cr+0.35Mo+0.47?2.30], and the balance of Fe and impurities. P, N, Ti and O among the impurities are P: ?0.030%, N: ?0.008%, Ti: ?0.005%, and O: ?0.0030%. The steel is easily subjected to cutting before nitriding and suitable for use as an automobile ring gear. The nitrided component having a surface hardness of 650-900 HV, core hardness being ?150 HV, and effective case depth of ?0.15 mm has excellent bending fatigue strength and surface fatigue strength although the content of Mo is as low as ?0.05% and has a small amount of expansion caused by nitriding.
    Type: Application
    Filed: January 26, 2012
    Publication date: February 6, 2014
    Applicants: HONDA MOTOR CO., LTD., NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hideki Imataka, Masato Yuya, Yuya Gyotoku, Atsushi Kobayashi, Susumu Maeda
  • Publication number: 20130273393
    Abstract: A steel for cold forging/nitriding has, by mass percent, C: 0.01 to 0.15%, Si?0.35%, Mn: 0.10 to 0.90%, P?0.030%, S?0.030%, Cr: 0.50 to 2.0%, V: 0.10 to 0.50%, Al: 0.01 to 0.10%, N?0.0080%, and O?0.0030%, further according to need a specific amount of one or more elements selected from Mo, Cu, Ni, Ti, Nb, Zr, Pb, Ca, Bi, Te, Se and Sb, with the balance being Fe and impurities, and further satisfying the conditions of [399×C+26×Si+123×Mn+30×Cr+32×Mo+19×V?160], [20?(669.3×logeC?1959.6×logeN?6983.3)×(0.067×Mo+0.147×V)?80], [140×Cr+125×Al+235×V?160] and [90?511×C+33×Mn+56×Cu+15×Ni+36×Cr+5×Mo+134×V?170] are excellent in cold forgeability and machinability after cold forging.
    Type: Application
    Filed: October 19, 2011
    Publication date: October 17, 2013
    Inventors: Hideki Imataka, Masayuki Horimoto, Yusuke Usui, Yuya Gyotoku
  • Publication number: 20130243641
    Abstract: A rolled steel bar or a wire rod for hot forging capable of coping with both bending/surface fatigue strength of components and machinability at a high level includes: a composition containing, in mass %, C: 0.1 to 0.25%, Si: 0.01 to 0.10%, Mn: 0.4 to 1.0%, S: 0.003 to 0.05%, Cr: 1.60 to 2.00%, Mo: 0.10% or less (including 0%), Al: 0.025 to 0.05%, and N: 0.010 to 0.025%, where a value of fn1 represented in a following formula (1) satisfies 1.82?fn1?2.10: fn1=Cr+2×Mo (1); impurities containing P: 0.025% or less, Ti: 0.003% or less, and O (oxygen): 0.002% or less; and a cross section in which a maximum value/a minimum value of an average ferrite grain diameter is 2.0 or less when measurement by observation is randomly carried out in 15 visual fields with an area per visual field set to be 62500 ?m2.
    Type: Application
    Filed: November 28, 2011
    Publication date: September 19, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yoshihiro Daitoh, Hideki Imataka, Masayuki Horimoto, Akira Shiga
  • Patent number: 7387691
    Abstract: A hot forged non-heat treated steel for induction hardening, comprising by mass percent, C: 0.35 to 0.45%, Si: 0.20 to 0.60%, Mn: 0.40 to 0.80%, S: 0.040 to 0.070%, Cr: 0.10 to 0.40%, Ti: 0.020 to 0.100%, Ca: 0.0005 to 0.0050%, B: 0.0005 to 0.0030%, O: 0.0015 to 0.0050%, Mo: 0 to 0.05%, P: 0.025% or less, V: 0.03% or less, Al: 0.009% or less and N: 0.0100% or less, and the balance being Fe and impurities, with Fn1=C+(Si/10)+(Mn/5)+(5Cr/22)+1.65V?(5/7S)+1.51×(Ti?3.4N)?0.63, Ca/O?1.0, and 25.9×Fn1+27.5×(Ti?3.4N)?7.9?5.7, has more excellence in the machinability than a conventional steel and also has fatigue strength equal to or more than that of a conventional steel, while using the steel product in a hot forged state as a starting material.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: June 17, 2008
    Assignees: Sumitomo Metal Industries, Ltd., Honda Motor Co., Ltd.
    Inventors: Daisuke Suzuki, Hitoshi Matsumoto, Hideki Imataka, Hayato Onda, Tetsuya Asai