Patents by Inventor Hideki Yasuoka

Hideki Yasuoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8860169
    Abstract: The present invention aims to enhance the reliability of a semiconductor device equipped with a Schottky barrier diode within the same chip, and its manufacturing technology. The semiconductor device includes an n-type n-well region formed over a p-type semiconductor substrate, an n-type cathode region formed in part thereof and higher in impurity concentration than the n-well region, a p-type guard ring region formed so as to surround the n-type cathode region, an anode conductor film formed so as to integrally cover the n-type cathode region and the p-type guard ring region and to be electrically coupled thereto, n-type cathode conduction regions formed outside the p-type guard ring region with each separation portion left therebetween, and a cathode conductor film formed so as to cover the n-type cathode conduction regions and to be electrically coupled thereto. The anode conductor film and the n-type cathode region are Schottky-coupled to each other.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: October 14, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Kunihiko Kato, Hideki Yasuoka, Masatoshi Taya, Masami Koketsu
  • Publication number: 20140061847
    Abstract: The present invention aims to enhance the reliability of a semiconductor device equipped with a Schottky barrier diode within the same chip, and its manufacturing technology. The semiconductor device includes an n-type n-well region formed over a p-type semiconductor substrate, an n-type cathode region formed in part thereof and higher in impurity concentration than the n-well region, a p-type guard ring region formed so as to surround the n-type cathode region, an anode conductor film formed so as to integrally cover the n-type cathode region and the p-type guard ring region and to be electrically coupled thereto, n-type cathode conduction regions formed outside the p-type guard ring region with each separation portion left therebetween, and a cathode conductor film formed so as to cover the n-type cathode conduction regions and to be electrically coupled thereto. The anode conductor film and the n-type cathode region are Schottky-coupled to each other.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: Kunihiko Kato, Hideki Yasuoka, Masatoshi Taya, Masami Koketsu
  • Patent number: 8604583
    Abstract: The present invention aims to enhance the reliability of a semiconductor device equipped with a Schottky barrier diode within the same chip, and its manufacturing technology. The semiconductor device includes an n-type n-well region formed over a p-type semiconductor substrate, an n-type cathode region formed in part thereof and higher in impurity concentration than the n-well region, a p-type guard ring region formed so as to surround the n-type cathode region, an anode conductor film formed so as to integrally cover the n-type cathode region and the p-type guard ring region and to be electrically coupled thereto, n-type cathode conduction regions formed outside the p-type guard ring region with each separation portion left therebetween, and a cathode conductor film formed so as to cover the n-type cathode conduction regions and to be electrically coupled thereto. The anode conductor film and the n-type cathode region are Schottky-coupled to each other.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: December 10, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kunihiko Kato, Hideki Yasuoka, Masatoshi Taya, Masami Koketsu
  • Patent number: 8324706
    Abstract: A semiconductor device which, in spite of the existence of a dummy active region, eliminates the need for a larger chip area and improves the surface flatness of the semiconductor substrate. In the process of manufacturing it, a thick gate insulating film for a high voltage MISFET is formed over an n-type buried layer as an active region and a resistance element IR of an internal circuit is formed over the gate insulating film. Since the thick gate insulating film lies between the n-type buried layer and the resistance element IR, the coupling capacitance produced between the substrate (n-type buried layer) and the resistance element IR is reduced.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: December 4, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Keiichi Yoshizumi, Kazuhisa Higuchi, Takayuki Nakaji, Masami Koketsu, Hideki Yasuoka
  • Publication number: 20120187520
    Abstract: The present invention aims to enhance the reliability of a semiconductor device equipped with a Schottky barrier diode within the same chip, and its manufacturing technology. The semiconductor device includes an n-type n-well region formed over a p-type semiconductor substrate, an n-type cathode region formed in part thereof and higher in impurity concentration than the n-well region, a p-type guard ring region formed so as to surround the n-type cathode region, an anode conductor film formed so as to integrally cover the n-type cathode region and the p-type guard ring region and to be electrically coupled thereto, n-type cathode conduction regions formed outside the p-type guard ring region with each separation portion left therebetween, and a cathode conductor film formed so as to cover the n-type cathode conduction regions and to be electrically coupled thereto. The anode conductor film and the n-type cathode region are Schottky-coupled to each other.
    Type: Application
    Filed: April 3, 2012
    Publication date: July 26, 2012
    Inventors: Kunihiko KATO, Hideki YASUOKA, Masatoshi TAYA, Masami KOKETSU
  • Patent number: 8169047
    Abstract: The present invention aims to enhance the reliability of a semiconductor device equipped with a Schottky barrier diode within the same chip, and its manufacturing technology. The semiconductor device includes an n-type n-well region formed over a p-type semiconductor substrate, an n-type cathode region formed in part thereof and higher in impurity concentration than the n-well region, a p-type guard ring region formed so as to surround the n-type cathode region, an anode conductor film formed so as to integrally cover the n-type cathode region and the p-type guard ring region and to be electrically coupled thereto, n-type cathode conduction regions formed outside the p-type guard ring region with each separation portion left therebetween, and a cathode conductor film formed so as to cover the n-type cathode conduction regions and to be electrically coupled thereto. The anode conductor film and the n-type cathode region are Schottky-coupled to each other.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: May 1, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Kunihiko Kato, Hideki Yasuoka, Masatoshi Taya, Masami Koketsu
  • Publication number: 20100244137
    Abstract: A semiconductor device which, in spite of the existence of a dummy active region, eliminates the need for a larger chip area and improves the surface flatness of the semiconductor substrate. In the process of manufacturing it, a thick gate insulating film for a high voltage MISFET is formed over an n-type buried layer as an active region and a resistance element IR of an internal circuit is formed over the gate insulating film. Since the thick gate insulating film lies between the n-type buried layer and the resistance element IR, the coupling capacitance produced between the substrate (n-type buried layer) and the resistance element IR is reduced.
    Type: Application
    Filed: June 10, 2010
    Publication date: September 30, 2010
    Inventors: Keiichi YOSHIZUMI, Kazuhisa Higuchi, Takayuki Nakaji, Masami Koketsu, Hideki Yasuoka
  • Patent number: 7790554
    Abstract: Provided is a manufacturing method of a semiconductor integrated circuit device having a plurality of first MISFETs in a first region and a plurality of second MISFETs in a second region, which comprises forming a first insulating film between two adjacent regions of the first MISFET forming regions in the first region and the second MISFET forming regions in the second region; forming a second insulating film over the surface of the semiconductor substrate between the first insulating films in each of the first and second regions; depositing a third insulating film over the second insulating film; forming a first conductive film over the third insulating film in the second region; forming, after removal of the third and second insulating films from the first region, a fourth insulating film over the surface of the semiconductor substrate in the first region; and forming a second conductive film over the fourth insulating film; wherein the third insulating film remains over the first insulating film in the se
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: September 7, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Hideki Yasuoka, Masami Kouketsu, Susumu Ishida, Kazunari Saitou
  • Patent number: 7759763
    Abstract: A semiconductor device which, in spite of the existence of a dummy active region, eliminates the need for a larger chip area and improves the surface flatness of the semiconductor substrate. In the process of manufacturing it, a thick gate insulating film for a high voltage MISFET is formed over an n-type buried layer as an active region and a resistance element IR of an internal circuit is formed over the gate insulating film. Since the thick gate insulating film lies between the n-type buried layer and the resistance element IR, the coupling capacitance produced between the substrate (n-type buried layer) and the resistance element IR is reduced.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: July 20, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Keiichi Yoshizumi, Kazuhisa Higuchi, Takayuki Nakaji, Masami Koketsu, Hideki Yasuoka
  • Patent number: 7592669
    Abstract: With the objective of suppressing or preventing a kink effect in the operation of a semiconductor device having a high breakdown voltage field effect transistor, n+ type semiconductor regions, each having a conduction type opposite to p+ type semiconductor regions for a source and drain of a high breakdown voltage pMIS, are disposed in a boundary region between each of trench type isolation portions at both ends, in a gate width direction, of a channel region of the high breakdown voltage pMIS and a semiconductor substrate at positions spaced away from p? type semiconductor regions, each having a field relaxing function, of the high breakdown voltage pMIS, so as not to contact the p? type semiconductor regions (on the drain side, in particular). The n+ type semiconductor regions extend to positions deeper than the trench type isolation portions.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: September 22, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Hideki Yasuoka, Keiichi Yoshizumi, Masami Koketsu
  • Publication number: 20090209078
    Abstract: Provided is a manufacturing method of a semiconductor integrated circuit device having a plurality of first MISFETs in a first region and a plurality of second MISFETs in a second region, which comprises forming a first insulating film between two adjacent regions of the first MISFET forming regions in the first region and the second MISFET forming regions in the second region; forming a second insulating film over the surface of the semiconductor substrate between the first insulating films in each of the first and second regions; depositing a third insulating film over the second insulating film; forming a first conductive film over the third insulating film in the second region; forming, after removal of the third and second insulating films from the first region, a fourth insulating film over the surface of the semiconductor substrate in the first region; and forming a second conductive film over the fourth insulating film; wherein the third insulating film remains over the first insulating film in the se
    Type: Application
    Filed: April 29, 2009
    Publication date: August 20, 2009
    Inventors: Hideki YASUOKA, Masami Kouketsu, Susumu Ishida, Kazunari Saitou
  • Patent number: 7541661
    Abstract: Provided is a manufacturing method of a semiconductor integrated circuit device having a plurality of first MISFETs in a first region and a plurality of second MISFETs in a second region, which comprises forming a first insulating film between two adjacent regions of the first MISFET forming regions in the first region and the second MISFET forming regions in the second region; forming a second insulating film over the surface of the semiconductor substrate between the first insulating films in each of the first and second regions; depositing a third insulating film over the second insulating film; forming a first conductive film over the third insulating film in the second region; forming, after removal of the third and second insulating films from the first region, a fourth insulating film over the surface of the semiconductor substrate in the first region; and forming a second conductive film over the fourth insulating film; wherein the third insulating film remains over the first insulating film in the se
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: June 2, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Hideki Yasuoka, Masami Kouketsu, Susumu Ishida, Kazunari Saitou
  • Patent number: 7514749
    Abstract: A method of manufacturing a semiconductor integrated circuit device having on the same substrate both a high breakdown voltage MISFET and a low breakdown voltage MISFET is provided. An element isolation trench is formed in advance so that the width thereof is larger than the sum of the thickness of a polycrystalline silicon film serving as a gate electrode of a low breakdown voltage, the thickness of a gate insulating film and an alignment allowance in processing of a gate electrode in a direction orthogonal to the extending direction of the gate electrode and is larger than the thickness of the polycrystalline silicon film in a planar region not overlapping the gate electrode. It is possible to decrease the number of manufacturing steps for the semiconductor integrated circuit device.
    Type: Grant
    Filed: May 18, 2008
    Date of Patent: April 7, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Kunihiko Kato, Masami Koketsu, Shigeya Toyokawa, Keiichi Yoshizumi, Hideki Yasuoka, Yasuhiro Takeda
  • Publication number: 20090065888
    Abstract: The present invention aims to enhance the reliability of a semiconductor device equipped with a Schottky barrier diode within the same chip, and its manufacturing technology. The semiconductor device includes an n-type n-well region formed over a main surface of a p-type semiconductor substrate, an n-type cathode region formed in part thereof and higher in impurity concentration than the n-well region, a p-type guard ring region formed so as to surround the n-type cathode region in circular form, an anode conductor film formed so as to integrally cover the n-type cathode region and the p-type guard ring region and to be electrically coupled thereto, n-type cathode conduction regions formed outside the p-type guard ring region with each separation portion left therebetween, and a cathode conductor film formed so as to cover the n-type cathode conduction regions and to be electrically coupled thereto. The anode conductor film and the n-type cathode region are Schottky-coupled to each other.
    Type: Application
    Filed: September 5, 2008
    Publication date: March 12, 2009
    Inventors: KUNIHIKO KATO, Hideki Yasuoka, Masatoshi Taya, Masami Koketsu
  • Publication number: 20080258236
    Abstract: With the objective of suppressing or preventing a kink effect in the operation of a semiconductor device having a high breakdown voltage field effect transistor, n+ type semiconductor regions, each having a conduction type opposite to p+ type semiconductor regions for a source and drain of a high breakdown voltage pMIS, are disposed in a boundary region between each of trench type isolation portions at both ends, in a gate width direction, of a channel region of the high breakdown voltage pMIS and a semiconductor substrate at positions spaced away from p? type semiconductor regions, each having a field relaxing function, of the high breakdown voltage pMIS, so as not to contact the p? type semiconductor regions (on the drain side, in particular). The n+ type semiconductor regions extend to positions deeper than the trench type isolation portions.
    Type: Application
    Filed: July 11, 2007
    Publication date: October 23, 2008
    Inventors: Hideki Yasuoka, Keiichi Yoshizumi, Masami Koketsu
  • Publication number: 20080220580
    Abstract: A method of manufacturing a semiconductor integrated circuit device having on the same substrate both a high breakdown voltage MISFET and a low breakdown voltage MISFET is provided. An element isolation trench is formed in advance so that the width thereof is larger than the sum of the thickness of a polycrystalline silicon film serving as a gate electrode of a low breakdown voltage, the thickness of a gate insulating film and an alignment allowance in processing of a gate electrode in a direction orthogonal to the extending direction of the gate electrode and is larger than the thickness of the polycrystalline silicon film in a planar region not overlapping the gate electrode. It is possible to decrease the number of manufacturing steps for the semiconductor integrated circuit device.
    Type: Application
    Filed: May 18, 2008
    Publication date: September 11, 2008
    Inventors: Kunihiko KATO, Masami KOKETSU, Shigeya TOYOKAWA, Keiichi YOSHIZUMI, Hideki YASUOKA, Yasuhiro TAKEDA
  • Publication number: 20080211029
    Abstract: A semiconductor device which, in spite of the existence of a dummy active region, eliminates the need for a larger chip area and improves the surface flatness of the semiconductor substrate. In the process of manufacturing it, a thick gate insulating film for a high voltage MISFET is formed over an n-type buried layer as an active region and a resistance element IR of an internal circuit is formed over the gate insulating film. Since the thick gate insulating film lies between the n-type buried layer and the resistance element IR, the coupling capacitance produced between the substrate (n-type buried layer) and the resistance element IR is reduced.
    Type: Application
    Filed: May 6, 2008
    Publication date: September 4, 2008
    Inventors: Keiichi YOSHIZUMI, Kazuhisa Higuchi, Takayuki Nakaji, Masami Koketsu, Hideki Yasuoka
  • Patent number: 7393737
    Abstract: A semiconductor device which, in spite of the existence of a dummy active region, eliminates the need for a larger chip area and improves the surface flatness of the semiconductor substrate. In the process of manufacturing it, a thick gate insulating film for a high voltage MISFET is formed over an n-type buried layer as an active region and a resistance element IR of an internal circuit is formed over the gate insulating film. Since the thick gate insulating film lies between the n-type buried layer and the resistance element IR, the coupling capacitance produced between the substrate (n-type buried layer) and the resistance element IR is reduced.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: July 1, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Keiichi Yoshizumi, Kazuhisa Higuchi, Takayuki Nakaji, Masami Koketsu, Hideki Yasuoka
  • Patent number: 7391083
    Abstract: A method of manufacturing a semiconductor integrated circuit device having on the same substrate both a high breakdown voltage MISFET and a low breakdown voltage MISFET is provided. An element isolation trench is formed in advance so that the width thereof is larger than the sum of the thickness of a polycrystalline silicon film serving as a gate electrode of a low breakdown voltage, the thickness of a gate insulating film and an alignment allowance in processing of a gate electrode in a direction orthogonal to the extending direction of the gate electrode and is larger than the thickness of the polycrystalline silicon film in a planar region not overlapping the gate electrode. It is possible to decrease the number of manufacturing steps for the semiconductor integrated circuit device.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: June 24, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Kunihiko Kato, Masami Koketsu, Shigeya Toyokawa, Keiichi Yoshizumi, Hideki Yasuoka, Yasuhiro Takeda
  • Patent number: 7259054
    Abstract: With the objective of suppressing or preventing a kink effect in the operation of a semiconductor device having a high breakdown voltage field effect transistor, n+ type semiconductor regions, each having a conduction type opposite to p+ type semiconductor regions for a source and drain of a high breakdown voltage pMIS, are disposed in a boundary region between each of trench type isolation portions at both ends, in a gate width direction, of a channel region of the high breakdown voltage pMIS and a semiconductor substrate at positions spaced away from p? type semiconductor regions, each having a field relaxing function, of the high breakdown voltage pMIS, so as not to contact the p? type semiconductor regions (on the drain side, in particular). The n+ type semiconductor regions extend to positions deeper than the trench type isolation portions.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: August 21, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Hideki Yasuoka, Keiichi Yoshizumi, Masami Koketsu