Patents by Inventor Hidenobu Nagahama

Hidenobu Nagahama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6695487
    Abstract: A conversion adapter to be used for connecting opposed optical connector ferrules having different diameters is formed of an amorphous alloy possessing at least a glass transition region, preferably a glass transition region of not less than 30 K in temperature width. Particularly, the amorphous alloy of M1—M2 system or M1—M2—La system (M1: Zr and/or Hf, M2: Ni, Cu, Fe, Co, Mn, Nb, Ti, V, Cr, Zn, Al, and/or Ga, La: rare earth element) possesses a wide range of &Dgr;Tx and thus can be advantageously used as a material for the conversion adapter. Such a conversion adapter can be manufactured with high mass-productivity by a mold casting method or molding method.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: February 24, 2004
    Assignee: YKK Corporation
    Inventors: Masayuki Kobayashi, Takeshi Taniguchi, Hidenobu Nagahama, Hideki Takeda, Etsuji Sugita
  • Patent number: 6508296
    Abstract: A method for the production of a cast article having a small hole comprises the steps of setting a linear core member in a cavity of a metal mold, injecting a molten metal into the cavity, and drawing out the core member from the resultant-cast product to form a small hole. A linear core member having a surface film formed by surface coating or by subjecting to a surface treatment is used so that the surface film is partly or as a whole peeled off the linear core member upon drawing it from the cast product, thereby enabling the core member to be drawn from the inside of the cast product. Alternatively, the linear core member is so constructed as to elastically deform in the drawing direction upon drawing it from the cast product to have a diameter smaller than the original diameter.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: January 21, 2003
    Assignee: YKK Corporation
    Inventors: Tadashi Yamaguchi, Masaki Sato, Hidenobu Nagahama
  • Publication number: 20020100575
    Abstract: A method for the production of a cast article having a small hole comprises the steps of setting a linear core member in a cavity of a metal mold, injecting a molten metal into the cavity, and drawing out the core member from the resultant cast product to form a small hole. A linear core member having a surface film formed by surface coating or by subjecting to a surface treatment is used so that the surface film is partly or as a whole peeled off the linear core member upon drawing it from the cast product, thereby enabling the core member to be drawn from the inside of the cast product. Alternatively, the linear core member is so constructed as to elastically deform in the drawing direction upon drawing it from the cast product to have a diameter smaller than the original diameter.
    Type: Application
    Filed: March 12, 2002
    Publication date: August 1, 2002
    Applicant: YKK Corporation
    Inventors: Tadashi Yamaguchi, Masaki Sato, Hidenobu Nagahama
  • Patent number: 6374899
    Abstract: A method for the production of a cast article having a small hole comprises the steps of setting a linear core member in a cavity of a metal mold, injecting a molten metal into the cavity, and drawing out the core member from the resultant cast product to form a small hole. A linear core member having a surface film formed by surface coating or by subjecting to a surface treatment is used so that the surface film is partly or as a whole peeled off the linear core member upon drawing it from the cast product, thereby enabling the core member to be drawn from the inside of the cast product. Alternatively, the linear core member is so constructed as to elastically deform in the drawing direction upon drawing it from the cast product to have a diameter smaller than the original diameter.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: April 23, 2002
    Assignee: YKK Corporation
    Inventors: Tadashi Yamaguchi, Masaki Sato, Hidenobu Nagahama
  • Publication number: 20020031310
    Abstract: A conversion adapter to be used for connecting opposed optical connector ferrules having different diameters is formed of an amorphous alloy possessing at least a glass transition region, preferably a glass transition region of not less than 30K in temperature width. Particularly, the amorphous alloy of M1-M2 system or M1-M2-La system (M1: Zr and/or Hf, M2: Ni, Cu, Fe, Co, Mn, Nb, Ti, V, Cr, Zn, Al, and/or Ga, La: rare earth element) possesses a wide range of &Dgr;Tx and thus can be advantageously used as a material for the conversion adapter. Such a conversion adapter can be manufactured with high mass-productivity by a mold casting method or molding method.
    Type: Application
    Filed: June 11, 2001
    Publication date: March 14, 2002
    Applicant: YKK Corporation and NTT Advanced Technology Corporation
    Inventors: Masayuki Kobayashi, Takeshi Taniguchi, Hidenobu Nagahama, Hideki Takeda, Etsuji Sugita
  • Patent number: 6231697
    Abstract: A high-strength amorphous alloy represented by the general formula: XaMbAlcTd (wherein X is at least one element selected between Zr and Hf; M is at least one element selected from the group consisting of Ni, Cu, Fe, Co and Mn; T is at least one element having a positive enthalpy of mixing with at least one of the above-mentioned X, M and Al; and a, b, c and d are atomic percentages, provided that 25≦a≦85, 5≦b ≦70, 0<c≦35 and 0<d≦15) and having a structure comprising at least having an amorphous phase. The amorphous alloy is produced by preparing an amorphous alloy having the above-mentioned composition and containing at least an amorphous phase, and heat-treating the alloy in the temperature range from the first exothermic reaction-starting temperature (Tx1: crystallization temperature) thereof to the second exothermic reaction-starting temperature (Tx2) thereof to decompose the amorphous phase into a mixed phase structure consisting of an amorphous phase and a microcrystalline phase.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: May 15, 2001
    Assignees: Ykk Corporation
    Inventors: Akihisa Inoue, Tao Zhang, Hidenobu Nagahama
  • Patent number: 5714018
    Abstract: A high-strength and high-toughness aluminum-based alloy having a composition represented by the general formula: Al.sub.a Ni.sub.b X.sub.c M.sub.d Q.sub.e, wherein X is at least one element selected from the group consisting of La, Ce, Mm, Ti and Zr; M is at least one element selected from the group consisting of V, Cr, Mn, Fe, Co, Y, Nb, Mo, Hf, Ta and W; Q is at least one element selected from the group consisting of Mg, Si, Cu and Zn; and a, b, c, d and e are, in atomic percentage, 83.ltoreq.a.ltoreq.94,3, 5.ltoreq.b.ltoreq.10, 0.5.ltoreq.c.ltoreq.3, 0.1.ltoreq.d.ltoreq.2, and 0.1.ltoreq.e.ltoreq.2. The aluminum-based alloy has a high strength and an excellent toughness and can maintain the excellent characteristics provided by a quench solidification process even when subjected to thermal influence at the time of working. In addition, it can provide an alloy material having a high specific strength by virtue of minimized amounts of elements having a high specific gravity to be added to the alloy.
    Type: Grant
    Filed: October 27, 1992
    Date of Patent: February 3, 1998
    Assignee: YKK Corporation
    Inventors: Kazuhiko Kita, Hidenobu Nagahama, Takeshi Terabayashi, Makoto Kawanishi
  • Patent number: 5647919
    Abstract: A high strength, rapidly solidified alloy consisting of aluminum and, added thereto, additive elements. The mean crystal grain size of the aluminum is 40 to 1000 nm, the mean size of particles of a stable phase or a metastable phase of various intermetallic compounds formed from the aluminum and the additive element and/or various intermetallic compounds formed from the additive elements themselves is 10 to 800 nm, and the intermetallic compound particles are distributed in a volume fraction of 20 to 50% in a matrix consisting of aluminum. The rapidly solidified alloy has an improved strength at room temperature and a high toughness and can maintain the properties inherent in a material produced by the rapid solidification process even when it undergoes a thermal influence during working.
    Type: Grant
    Filed: October 5, 1994
    Date of Patent: July 15, 1997
    Assignee: YKK Corporation
    Inventors: Kazuhiko Kita, Hidenobu Nagahama
  • Patent number: 5454855
    Abstract: A compacted and consolidated material of an aluminum-based alloy obtained by compacting and consolidating a rapidly solidified material having a composition represented by the general formula: Al.sub.a Ni.sub.b X.sub.c M.sub.d, Al.sub.a Ni.sub.b X.sub.c Q.sub.e or Al.sub.a 'Ni.sub.b X.sub.c M.sub.d Q.sub.e, wherein X represents at least one element selected from the group consisting of La, Ce, Mm (misch metal), Ti and Zr; M represents at least one element selected from the group consisting of V, Cr, Mn, Fe, Co, Y, Nb, Mo, Hf, Ta and W; Q represents at least one element selected from the group consisting of Mg, Si, Cu and Zn; and a, a', b, c, d and e are, in atomic percentages, 85.ltoreq.a.ltoreq.94.4, 83.ltoreq.a.ltoreq.94.3, 5.ltoreq.b.ltoreq.10, 0.5.ltoreq.c.ltoreq.3, 0.1.ltoreq.d.ltoreq.2 and 0.1.ltoreq.e.ltoreq.2.
    Type: Grant
    Filed: October 27, 1992
    Date of Patent: October 3, 1995
    Assignee: YKK Corporation
    Inventors: Kazuhiko Kita, Hidenobu Nagahama, Takeshi Terabayashi, Makoto Kawanishi
  • Patent number: 5334266
    Abstract: High strength, heat resistant aluminum-based alloys have a composition consisting of the following general formula Al.sub.a M.sub.b X.sub.d or Al.sub.a' M.sub.b Q.sub.c X.sub.d, wherein M is at least one metal element selected from the group consisting of Co, Ni, Cu, Zn and Ag; Q is at least one metal element selected from the group consisting of V, Cr, Mn and Fe; X is at least one metal element selected from the group consisting of Li, Mg, Si, Ca, Ti and Zr; and a, a', b, c and d are, in atomic percentages; 80.ltoreq.a.ltoreq.94.5, 80.ltoreq.a'.ltoreq.94, 5.ltoreq.b.ltoreq.15, 0.5.ltoreq.c.ltoreq.3 and 0.5.ltoreq.d.ltoreq.10. In the above specified alloys, aluminum intermetallic compounds are finely dispersed throughout an aluminum matrix and, thereby, the mechanical properties, especially strength and heat resistance, are considerably improved.
    Type: Grant
    Filed: November 23, 1992
    Date of Patent: August 2, 1994
    Assignee: Yoshida Kogyo K.K.
    Inventors: Makoto Kawanishi, Hidenobu Nagahama
  • Patent number: 5264021
    Abstract: A compacted and consolidated aluminum-based alloy material is obtained by compacting and consolidating a rapidly-solidified material having a composition represented by the general formula: Al.sub.a Ni.sub.b X.sub.c M.sub.d or Al.sub.a' Ni.sub.b X.sub.c M.sub.d Q.sub.e, where X is one or two elements selected from La and Ce or an Mm; M is Zr or Ti; Q is one or more elements selected from Mg, Si, Cu and Zn, and a, a', b, c, d and e are, in atomic percentages, 84.ltoreq.a.ltoreq.94.8, 82.ltoreq.a'.ltoreq.94.6, 5.ltoreq.b .ltoreq.10, 0.1.ltoreq.c.ltoreq.3, 0.1.ltoreq.d.ltoreq.3, and 0.2.ltoreq.e.ltoreq.2. According to the production process of the invention, powder or flakes obtained by rapidly solidifying are compacted, followed by compressing, forming and consolidating by conventional plastic working operations. The consolidated material has an elongation sufficient to withstand secondary working operations. Moreover, the material retains the excellent properties of its raw material as they are.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: November 23, 1993
    Assignee: Yoshida Kogyo K.K.
    Inventors: Kazuhiko Kita, Makoto Kawanishi, Hidenobu Nagahama