Patents by Inventor Hidenori Ieda

Hidenori Ieda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11954962
    Abstract: A main unit includes a cassette shelf, at least one transporting cassette holder that temporarily holds a cassette removed from the cassette shelf and to be transported to a drug receiver, at least one returning cassette holder that temporarily holds the cassette received from the drug receiver and to be returned to the cassette shelf, and a main cassette transporter that transports the cassette between the cassette shelf and the at least one transporting cassette holder, and between the cassette shelf and the at least one returning cassette holder.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: April 9, 2024
    Assignee: YUYAMA MFG. CO., LTD.
    Inventors: Akifumi Tanaka, Hidenori Tsuji, Satoshi Gotou, Hiroshi Ieda
  • Patent number: 9162288
    Abstract: Fine, highly-crystallized metal powder is produced at low cost and high efficiency by a method involving: ejecting raw material powder composed of one or more kinds of thermally decomposable metal compound powders into a reaction vessel through a nozzle together with a carrier gas and producing a metal powder by heating the raw material powder at a temperature T2 which is higher than the decomposition temperature of the raw material powder and not lower than (Tm?200°) C. where Tm is the melting point (° C.) of the metal to be produced, while allowing the raw material powder to pass through the reaction vessel in a state where the raw material powder is dispersed in a gas phase at a concentration of 10 g/liter or less, wherein an ambient temperature T1 of a nozzle opening part is set to a temperature of 400° C. or higher and lower than (Tm?200°) C.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: October 20, 2015
    Assignee: SHOEI CHEMICAL INC.
    Inventors: Yuji Akimoto, Kazuro Nagashima, Hidenori Ieda, Masayuki Maekawa
  • Patent number: 8734562
    Abstract: A nickel powder with an average particle size of 0.05 to 1.0 ?m, which is composed of nickel particles having an oxidized surface layer and containing sulfur, wherein the sulfur content with respect to the total weight of the powder is 100 to 2000 ppm, and the intensity of a peak identified to sulfur bonded to nickel in surface analysis by ESCA of the nickel particles varies in a direction toward the center from the surface of the particles, and this intensity has its maximum at a location deeper than 3 nm from the particle outermost surface. This nickel powder is manufactured by bringing a nickel powder containing sulfur and dispersed in a non-oxidizing gas atmosphere into contact with an oxidizing gas at a high temperature.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: May 27, 2014
    Assignee: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Kazuro Nagashima, Hidenori Ieda, Hitomi Yanagi
  • Publication number: 20130059161
    Abstract: Fine, highly-crystallized metal powder is produced at low cost and high efficiency by a method involving: ejecting raw material powder composed of one or more kinds of thermally decomposable metal compound powders into a reaction vessel through a nozzle together with a carrier gas and producing a metal powder by heating the raw material powder at a temperature T2 which is higher than the decomposition temperature of the raw material powder and not lower than (Tm?200)° C. where Tm is the melting point (° C.) of the metal to be produced, while allowing the raw material powder to pass through the reaction vessel in a state where the raw material powder is dispersed in a gas phase at a concentration of 10 g/liter or less, wherein an ambient temperature T1 of a nozzle opening part is set to a temperature of 400° C. or higher and lower than (Tm?200)° C.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 7, 2013
    Inventors: Yuji AKIMOTO, Kazuro Nagashima, Hidenori Ieda, Masayuki Maekawa
  • Publication number: 20120114945
    Abstract: A nickel powder with an average particle size of 0.05 to 1.0 ?m, which is composed of nickel particles having an oxidized surface layer and containing sulfur, wherein the sulfur content with respect to the total weight of the powder is 100 to 2000 ppm, and the intensity of a peak identified to sulfur bonded to nickel in surface analysis by ESCA of the nickel particles varies in a direction toward the center from the surface of the particles, and this intensity has its maximum at a location deeper than 3 nm from the particle outermost surface. This nickel powder is manufactured by bringing a nickel powder containing sulfur and dispersed in a non-oxidizing gas atmosphere into contact with an oxidizing gas at a high temperature.
    Type: Application
    Filed: January 16, 2012
    Publication date: May 10, 2012
    Inventors: Yuji Akimoto, Kazuro Nagashima, Hidenori Ieda, Hitomi Yanagi
  • Patent number: 8128725
    Abstract: A nickel powder with an average particle size of 0.05 to 1.0 ?m, which is composed of nickel particles having an oxidized surface layer and containing sulfur, wherein the sulfur content with respect to the total weight of the powder is 100 to 2000 ppm, and the intensity of a peak identified to sulfur bonded to nickel in surface analysis by ESCA of the nickel particles varies in a direction toward the center from the surface of the particles, and this intensity has its maximum at a location deeper than 3 nm from the particle outermost surface. This nickel powder is manufactured by bringing a nickel powder containing sulfur and dispersed in a non-oxidizing gas atmosphere into contact with an oxidizing gas at a high temperature.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: March 6, 2012
    Assignee: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Kazuro Nagashima, Hidenori Ieda, Hitomi Yanagi
  • Patent number: 7704297
    Abstract: A melt of nickel nitrate hydrate is introduced as droplets or liquid flow into a heated reaction vessel and thermally decomposed in a gas phase at a temperature of 1200° C. or more and at an oxygen partial pressure equal to or below the equilibrium oxygen pressure of nickel-nickel oxide at that temperature to manufacture a highly crystalline fine nickel powder with an extremely narrow particle size distribution. The oxygen partial pressure during the thermal decomposition is preferably 10?2 Pa or less, and a metal other than nickel, a semimetal and/or a compound of these may be added to the nickel nitrate hydrate melt to manufacture a highly crystalline nickel alloy powder or highly crystalline nickel composite powder. The resultant powder is suited in particular to thick film pastes such as conductor pastes for manufacturing ceramic multilayer electronic components.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: April 27, 2010
    Assignee: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Kazuro Nagashima, Hidenori Ieda, Tetsuya Kimura
  • Patent number: 7618474
    Abstract: A nickel powder with a mean particle size of 0.05 to 1.0 ?m, the nickel powder having a thin oxidized layer of nickel on a surface thereof, an oxygen content of 0.3 to 3.0 wt. % and a carbon content of 100 ppm or less per specific surface area of 1 m2/g of the powder, in a weight proportion of carbon to the nickel powder of unit weight. When the powder is used for a conductive paste for forming inner electrode layers of a multilayer electronic component, it enables a decrease in the residual carbon amount after a binder removal process, thereby making it possible to obtain a multilayer ceramic electronic component excellent electrical characteristics and high reliability in which electrode layers excelling in continuity are formed without decreasing the strength and electrical characteristics of the electronic component or creating structural defects.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: November 17, 2009
    Assignee: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Kazuro Nagashima, Hidenori Ieda
  • Patent number: 7503959
    Abstract: Metal particles that can be alloyed with rhenium are dispersed as a main component in a gas phase, a rhenium oxide vapor is made to be present around these particles, the rhenium oxide is reduced, and the rhenium precipitated on the surface of the main component metal particles as a result of this reduction is diffused under a high temperature into the main component metal particles, which gives a rhenium-containing alloy powder including the main component metal and rhenium. The powder thus obtained preferably contains 0.01 to 50 wt % rhenium, has an average particle size of 0.01 to 10 ?m, and is made into a conductor paste by being uniformly mixed and dispersed in an organic vehicle along with other additives as needed.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: March 17, 2009
    Assignee: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Kazuro Nagashima, Masayuki Maekawa, Hidenori Ieda, Yasuhiro Kamahori
  • Publication number: 20080226487
    Abstract: A nickel powder with an average particle size of 0.05 to 1.0 ?m, which is composed of nickel particles having an oxidized surface layer and containing sulfur, wherein the sulfur content with respect to the total weight of the powder is 100 to 2000 ppm, and the intensity of a peak identified to sulfur bonded to nickel in surface analysis by ESCA of the nickel particles varies in a direction toward the center from the surface of the particles, and this intensity has its maximum at a location deeper than 3 nm from the particle outermost surface. This nickel powder is manufactured by bringing a nickel powder containing sulfur and dispersed in a non-oxidizing gas atmosphere into contact with an oxidizing gas at a high temperature.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 18, 2008
    Inventors: Yuji Akimoto, Kazuro Nagashima, Hidenori Ieda, Hitomi Yanagi
  • Publication number: 20070251351
    Abstract: A melt of nickel nitrate hydrate is introduced as droplets or liquid flow into a heated reaction vessel and thermally decomposed in a gas phase at a temperature of 1200° C. or more and at an oxygen partial pressure equal to or below the equilibrium oxygen pressure of nickel-nickel oxide at that temperature to manufacture a highly crystalline fine nickel powder with an extremely narrow particle size distribution. The oxygen partial pressure during the thermal decomposition is preferably 10?2 Pa or less, and a metal other than nickel, a semimetal and/or a compound of these may be added to the nickel nitrate hydrate melt to manufacture a highly crystalline nickel alloy powder or highly crystalline nickel composite powder. The resultant powder is suited in particular to thick film pastes such as conductor pastes for manufacturing ceramic multilayer electronic components.
    Type: Application
    Filed: April 3, 2007
    Publication date: November 1, 2007
    Inventors: Yuji Akimoto, Kazuro Nagashima, Hidenori Ieda, Tetsuya Kimura
  • Publication number: 20070125195
    Abstract: A nickel powder with a mean particle size of 0.05 to 1.0 ?m, the nickel powder comprising a thin oxidized layer of nickel on a surface thereof and having an oxygen content of 0.3 to 3.0 wt. % and a carbon content of 100 ppm or less per specific surface area of 1 m2/g of the powder, in a weight proportion of carbon to the nickel powder of unit weight. When the powder is used for a conductive paste for forming inner electrode layers of a multilayer electronic component, it enables the decrease in the residual carbon amount after a binder removal process, thereby making it possible to obtain a multilayer ceramic electronic component with excellent electric characteristics and high reliability in which electrode layers excelling in continuity are formed without decreasing the strength and electric characteristics of the electronic component or creating structural defects.
    Type: Application
    Filed: November 20, 2006
    Publication date: June 7, 2007
    Inventors: Yuji Akimoto, Kazuro Nagashima, Hidenori Ieda
  • Publication number: 20070084309
    Abstract: Metal particles that can be alloyed with rhenium are dispersed as a main component in a gas phase, a rhenium oxide vapor is made to be present around these particles, the rhenium oxide is reduced, and the rhenium precipitated on the surface of the main component metal particles as a result of this reduction is diffused under a high temperature into the main component metal particles, which gives a rhenium-containing alloy powder including the main component metal and rhenium. The powder thus obtained preferably contains 0.01 to 50 wt % rhenium, has an average particle size of 0.01 to 10 ?m, and is made into a conductor paste by being uniformly mixed and dispersed in an organic vehicle along with other additives as needed.
    Type: Application
    Filed: October 16, 2006
    Publication date: April 19, 2007
    Inventors: Yuji Akimoto, Kazuro Nagashima, Masayuki Maekawa, Hidenori Ieda, Yasuhiro Kamahori
  • Patent number: 7138102
    Abstract: A method for manufacturing a highly-crystallized double oxide powder composed of a single crystal phase which can be used as a phosphor material, a dielectric material, a magnetic material, etc. The method involves forming fine droplets of a raw material solution containing a raw material compound that includes at least one metal element and/or at least one semi-metal element that constitutes a double oxide, and heating these droplets at a high temperature, wherein the raw material solution is a solution which exhibits only one main peak attributable to the decomposition reaction of the raw material compound or a reaction intermediate thereof in a DTA profile when the solution is dried and solidified and subjected to TG-DTA measurement.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: November 21, 2006
    Assignee: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Kazuro Nagashima, Yoshikazu Nageno, Hidenori Ieda, Naoko Tanaka
  • Patent number: 7066980
    Abstract: A method in which a metal powder is produced by ejecting a thermally decomposable metal compound powder into a reaction vessel through a nozzle together with a carrier gas under the condition V/S>600, where V is the flow rate of the carrier gas per unit time (liter/min), and S is the cross-sectional area of the nozzle opening part (cm2), and heating this metal powder at a temperature which is higher than the decomposition temperature of the metal compound powder and not lower than (Tm?200)° C., where Tm is the melting point of the metal, in a state where the metal compound powder is dispersed in the gas phase at a concentration of 10 g/liter or less. The method provides a fine, spherical, highly-crystallized metal powder which has a high purity, high density, high dispersibility and extremely uniform particle size, at low cost and using a simple process.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: June 27, 2006
    Assignee: Shoei Chemical, Inc.
    Inventors: Yuji Akimoto, Shinichi Ono, Kazuro Nagashima, Masayuki Maekawa, Hidenori Ieda
  • Publication number: 20040055418
    Abstract: A method in which a metal powder is produced by ejecting a thermally decomposable metal compound powder into a reaction vessel through a nozzle together with a carrier gas under the condition V/S>600, where V is the flow rate of the carrier gas per unit time (liter/min), and S is the cross-sectional area of the nozzle opening part (cm2), and heating this metal powder at a temperature which is higher than the decomposition temperature of the metal compound powder and not lower than (Tm−200)° C., where Tm is the melting point of the metal, in a state where the metal compound powder is dispersed in the gas phase at a concentration of 10 g/liter or less. The method provides a fine, spherical, highly-crystallized metal powder which has a high purity, high density, high dispersibility and extremely uniform particle size, at low cost and using a simple process.
    Type: Application
    Filed: September 8, 2003
    Publication date: March 25, 2004
    Inventors: Yuji Akimoto, Shinichi Ono, Kazuro Nagashima, Masayuki Maekawa, Hidenori Ieda
  • Publication number: 20040009109
    Abstract: A method for manufacturing a highly-crystallized double oxide powder composed of a single crystal phase by forming fine droplets of a raw material solution containing a raw material compound that includes at least one metal element and/or at least one semi-metal element that constitutes a double oxide, and heating these droplets at a high temperature, wherein the raw material solution is a solution which exhibits only one main peak attributable to the decomposition reaction of the raw material compound or a reaction intermediate thereof in a DTA profile when the solution is dried and solidified and subjected to TG-DTA measurement. The method provides a highly-crystallized double oxide powder which is free from inclusion of impurities, has a high dispersibility and a uniform particle size, and composed of a single crystal phase, by a simple procedure at low cost.
    Type: Application
    Filed: July 1, 2003
    Publication date: January 15, 2004
    Inventors: Yuji Akimoto, Kazuro Nagashima, Yoshikazu Negeno, Hidenori Ieda, Naoko Tanaka