Patents by Inventor Hidenori Yukawa

Hidenori Yukawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200381794
    Abstract: A square waveguide (1) has four ridges (6a, 6b, 7a, 7b). The cross section of the square waveguide (1) perpendicular to a waveguide axial direction is square. Inside the square waveguide (1), two rectangular waveguide terminals (4, 5) are formed by partitioning the inside along the waveguide axial direction. A septum phase plate (2) formed to get narrower stepwisely as its gets closer to a square waveguide terminal (3) opposite to the rectangular waveguide terminals (4, 5) is provided. A projecting portion (8) is provided on a part of a ridge (7b) formed on a ridge-side wall surface opposite to a wall surface, the septum phase plate (2) being joined to the wall surface in a part where the septum phase plate has largest width, the projecting portion (8) being larger than other parts of the ridge (7b) in a cross-sectional shape perpendicular to the waveguide axial direction.
    Type: Application
    Filed: May 26, 2017
    Publication date: December 3, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hidenori YUKAWA, Yu USHIJIMA, Motomi WATANABE, Jun GOTO, Naofumi YONEDA, Shinji ARAI
  • Publication number: 20200274218
    Abstract: A waveguide unit (2) is closed at one end thereof by a short circuit plane (2a) provided with through holes (3-1 to 3-6). Radio wave absorbers (4-1 to 4-6) absorb a frequency signal being a non-reflective target in the state of being inserted through the through holes (3-1 to 3-6) toward the inside of the waveguide unit (2) and contacting inner surfaces (3?-1 to 3?-6) of the through holes (3-1 to 3-6).
    Type: Application
    Filed: May 22, 2017
    Publication date: August 27, 2020
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yu USHIJIMA, Hidenori YUKAWA, Takeshi OSHIMA, Motomi WATANABE, Naofumi YONEDA
  • Patent number: 10680307
    Abstract: A substrate is used as one tube wall of a hollow waveguide, the substrate including a strip line wired in an inner layer, a first ground surface formed on a front surface, and a second ground surface formed on a part of a back surface. As a result of such a configuration, a waveguide strip line transducer having the same dimension as the external dimension of the hollow waveguide can be obtained.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: June 9, 2020
    Assignee: Mitsubishi Electric Coporation
    Inventors: Motomi Watanabe, Shinji Arai, Tomohiro Takahashi, Takeshi Oshima, Takeshi Yuasa, Takuma Nishimura, Hidenori Yukawa
  • Patent number: 10581136
    Abstract: An input waveguide (6) having one end connected between an L-shaped waveguide (1a) and an L-shaped waveguide (1f) and another end connected to the PORT (1); an output waveguide (7) having one end connected between the L-shaped waveguide (1a) and a flat waveguide (1b) and another end connected to the PORT (2); an output waveguide (8) having one end connected between the flat waveguide (1b) and an L-shaped waveguide (1c) and another end connected to the PORT (3); an output waveguide (9) having one end connected between the L-shaped waveguide (1c) and an L-shaped waveguide (1d) and another end connected to the PORT (4); and a plurality of branching waveguides (10) each having one end connected to the output waveguide (7) and another end connected to the output waveguide (8) are provided.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: March 3, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yu Ushijima, Hidenori Yukawa, Motomi Watanabe, Naofumi Yoneda
  • Publication number: 20190157735
    Abstract: A substrate is used as one tube wall of a hollow waveguide, the substrate including a strip line wired in an inner layer, a first ground surface formed on a front surface, and a second ground surface formed on a part of a back surface. As a result of such a configuration, a waveguide strip line transducer having the same dimension as the external dimension of the hollow waveguide can be obtained.
    Type: Application
    Filed: June 5, 2017
    Publication date: May 23, 2019
    Applicant: Mitsubishi Electric Corporation
    Inventors: Motomi WATANABE, Shinji ARAI, Tomohiro TAKAHASHI, Takeshi OSHIMA, Takeshi YUASA, Takuma NISHIMURA, Hidenori YUKAWA
  • Publication number: 20190123414
    Abstract: An input waveguide (6) having one end connected between an L-shaped waveguide (1a) and an L-shaped waveguide (1f) and another end connected to the PORT (1); an output waveguide (7) having one end connected between the L-shaped waveguide (1a) and a flat waveguide (1b) and another end connected to the PORT (2); an output waveguide (8) having one end connected between the flat waveguide (1b) and an L-shaped waveguide (1c) and another end connected to the PORT (3); an output waveguide (9) having one end connected between the L-shaped waveguide (1c) and an L-shaped waveguide (1d) and another end connected to the PORT (4); and a plurality of branching waveguides (10) each having one end connected to the output waveguide (7) and another end connected to the output waveguide (8) are provided.
    Type: Application
    Filed: May 24, 2016
    Publication date: April 25, 2019
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yu USHIJIMA, Hidenori YUKAWA, Motomi WATANABE, Naofumi YONEDA
  • Publication number: 20180366826
    Abstract: To achieve a phase shift circuit capable of obtaining good reflection characteristics and a desired phase shift amount at the center frequency without increasing the length in the propagating direction, the phase shift circuit includes: an input waveguide having an input terminal at one end; an output waveguide having an output terminal at one end; a middle waveguide whose thickness is thinner than a thickness of the input waveguide or the output waveguide and whose central position in a thickness direction different from a central position in the thickness direction of the input waveguide or the output waveguide; a first tapered waveguide which connects another end of the input waveguide with one end of the middle waveguide; and a second tapered waveguide which connects another end of the output waveguide with another end of the middle waveguide.
    Type: Application
    Filed: March 18, 2016
    Publication date: December 20, 2018
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Hidenori YUKAWA, Yu USHIJIMA, Motomi WATANABE, Naofumi YONEDA
  • Publication number: 20180358679
    Abstract: A third coupler (3c) outputs a signal outputted from a first coupler (3a) to an input terminal (8-1) of a second septum polarizer (8b), and outputs a signal outputted from a second coupler (3b) to an input terminal (8-2) of a first septum polarizer (8a).
    Type: Application
    Filed: January 12, 2016
    Publication date: December 13, 2018
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Hidenori YUKAWA, Yu USHIJIMA, Motomi WATANABE, Naofumi YONEDA
  • Patent number: 9929454
    Abstract: A circularly polarized wave generator includes a rectangular hollow waveguide (1), a plurality of first protrusions (2) that are provided on one pair of opposing wall surfaces in the waveguide (1), have longitudinal directions orthogonal to an axial direction of the waveguide (1), and are arranged at intervals along the axial direction, and a plurality of second protrusions (3) that are provided between the first protrusions (2) on the wall surfaces and are arranged with longitudinal directions thereof running along the axial direction.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: March 27, 2018
    Assignee: Mitsubishi Electrics Corporation
    Inventors: Yu Ushijima, Hidenori Yukawa, Tetsu Owada, Shuji Nuimura
  • Publication number: 20170170571
    Abstract: A circularly polarized wave generator includes a rectangular hollow waveguide (1), a plurality of first protrusions (2) that are provided on one pair of opposing wall surfaces in the waveguide (1), have longitudinal directions orthogonal to an axial direction of the waveguide (1), and are arranged at intervals along the axial direction, and a plurality of second protrusions (3) that are provided between the first protrusions (2) on the, all surfaces and are arranged with longitudinal directions thereof running along the axial direction.
    Type: Application
    Filed: April 2, 2015
    Publication date: June 15, 2017
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yu USHIJIMA, Hidenori YUKAWA, Tetsu OWADA, Shuji NUIMURA
  • Patent number: 9000861
    Abstract: A polarization coupler includes: connector waveguide that connects circular waveguide with quadrangular waveguide arranged in an axial direction of circular waveguide and having short side shorter than an inner diameter of circular waveguide; flat conductor wall formed over connector and circular waveguides, and dividing the inside of connector and circular waveguides arranged parallel to an extending direction of long side of quadrangular waveguide; first inclined surface formed on inner wall of connector waveguide at a position facing one surface of conductor wall, and inclined toward conductor wall as coming closer to quadrangular waveguide; second inclined surface formed on the inner wall of connector waveguide at a position facing the other surface of conductor wall, and inclined toward conductor wall as coming closer to quadrangular waveguide; and coupling hole, formed in circular waveguide, for extracting one polarization-divided by conductor wall out of electromagnetic waves propagated through circula
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: April 7, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hiroto Ado, Shuji Nuimura, Tomohiro Mizuno, Hidenori Yukawa, Tetsu Owada, Takaaki Kimata
  • Publication number: 20140197908
    Abstract: A polarization coupler includes: connector waveguide that connects circular waveguide with quadrangular waveguide arranged in an axial direction of circular waveguide and having short side shorter than an inner diameter of circular waveguide; flat conductor wall formed over connector and circular waveguides, and dividing the inside of connector and circular waveguides arranged parallel to an extending direction of long side of quadrangular waveguide; first inclined surface formed on inner wall of connector waveguide at a position facing one surface of conductor wall, and inclined toward conductor wall as coming closer to quadrangular waveguide; second inclined surface formed on the inner wall of connector waveguide at a position facing the other surface of conductor wall, and inclined toward conductor wall as coming closer to quadrangular waveguide; and coupling hole, formed in circular waveguide, for extracting one polarization-divided by conductor wall out of electromagnetic waves propagated through circula
    Type: Application
    Filed: November 16, 2012
    Publication date: July 17, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hiroto Ado, Shuji Nuimura, Tomohiro Mizuno, Hidenori Yukawa, Tetsu Owada, Takaaki Kimata
  • Patent number: 8520651
    Abstract: A portable device configured to be connected to a router via a wireless or wired connection. The portable device includes a first processing section that operates in each of a first operation mode to serve as a bridge functional part and a second operation mode to serve as a router functional part. The first processing section operates in the first operation mode when the portable device is connected to the router.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: August 27, 2013
    Assignee: Buffalo Inc.
    Inventors: Daisuke Yamada, Hidenori Yukawa
  • Patent number: 8416018
    Abstract: A variable frequency amplifier includes a main amplifier system 4 for amplifying one of signals into which an input signal is split by a directional coupler 3 to output the amplified signal, and an injection amplifier system 9 for adjusting at least one of the amplitude and phase of the other one of the signals into which the input signal is split by the directional coupler 3 according to a setting provided thereto from outside the variable frequency amplifier, and for amplifying the other signal and injecting this amplified signal into an output side of the main amplifier system 4.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: April 9, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazuhisa Yamauchi, Hidenori Yukawa, Akira Inoue, Atsushi Yamamoto, Koichi Fujisaki, Hiroomi Ueda
  • Publication number: 20120134308
    Abstract: A portable device configured to be connected to a router via a wireless or wired connection. The portable device includes a first processing section that operates in each of a first operation mode to serve as a bridge functional part and a second operation mode to serve as a router functional part. The first processing section operates in the first operation mode when the portable device is connected to the router.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 31, 2012
    Applicant: Buffalo Inc.
    Inventors: Daisuke Yamada, Hidenori Yukawa
  • Publication number: 20110140776
    Abstract: A variable frequency amplifier includes a main amplifier system 4 for amplifying one of signals into which an input signal is split by a directional coupler 3 to output the amplified signal, and an injection amplifier system 9 for adjusting at least one of the amplitude and phase of the other one of the signals into which the input signal is split by the directional coupler 3 according to a setting provided thereto from outside the variable frequency amplifier, and for amplifying the other signal and injecting this amplified signal into an output side of the main amplifier system 4.
    Type: Application
    Filed: November 4, 2009
    Publication date: June 16, 2011
    Applicant: Mitsubishi Electric Coporation
    Inventors: Kazuhisa Yamauchi, Hidenori Yukawa, Akira Inoue, Atsushi Yamamoto, Koichi Fujisaki, Hiroomi Ueda
  • Patent number: 6379910
    Abstract: One end of a thin-tube type solid phase in which a receptor specific for a material or an organism to be measured which can induce a pH-change of substrate solution is immobilized is soaked in a sample solution and then taken out therefrom. The one end of the thin-tube type solid phase is disposed in a measurement cell and a sensing portion of a pH electrode disposed in the measurement cell is in the vicinity of the one end of the thin-tube type solid phase. The measurement cell and the thin-tube type solid phase are filled with a substrate solution so that a reaction takes place. Thereafter, the substrate solution in the thin-tube type solid phase is moved to the sensing portion by a solution feed pump. The output of the pH electrode at this timing is detected.
    Type: Grant
    Filed: June 4, 1998
    Date of Patent: April 30, 2002
    Assignee: Nihon Kohden Corporation
    Inventors: Michihiro Nakamura, Harutoshi Terasawa, Hiroyuki Okada, Hidenori Yukawa, Hidehiro Hosaka
  • Patent number: 6335669
    Abstract: An RF circuit module comprising a first RF semiconductor device 19 mounted within a cavity 4 surrounded by a wall 3 of a first dielectric circuit board 1, and a second RF semiconductor device 29 mounted to a second dielectric circuit board 2 placed on the wall 3. A metal base 11 is disposed on the first circuit board 1 and a number of embedded conductors 13 such as via holes are embedded within the wall 3 and arranged to surround the cavity 4 so that each having one end electrically connected to the metal base 11 and the other end exposed and arranged to surround the cavity 4. A metal cover 12 is sealingly attached to the first circuit board 1 to cover the second circuit board 2 and the second RF semiconductor device 29 and electrically connected at the upper surface of the wall 3. Therefore, the first and second RF semiconductor devices are electrically shielded and hermetically sealed, providing an RF circuit module of small-sized and high-performance.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: January 1, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Moriyasu Miyazaki, Hidenori Yukawa, Hideyuki Oh-Hashi, Masatoshi Nii