Patents by Inventor Hideo Nishihara
Hideo Nishihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9502273Abstract: A heat treatment apparatus includes a chamber for receiving a substrate therein, and a measurement part for measuring an air particle concentration in a processing space provided in the chamber. An air particle concentration in the processing space provided in the chamber is measured by the measurement part. The air particle concentration is correlated with the number of particles attached to a substrate received in the chamber. Accordingly, by conducting a particle test after the air particle concentration in the processing space is lowered to an air particle concentration corresponding to the number of particles existing on the substrate which can pass the particle test, the number of times the particle test should be conducted after maintenance of the heat treatment apparatus can be reduced.Type: GrantFiled: May 16, 2013Date of Patent: November 22, 2016Assignee: SCREEN Holdings Co., Ltd.Inventor: Hideo Nishihara
-
Publication number: 20160318077Abstract: A heat treatment apparatus includes a chamber for receiving a substrate therein, and a measurement part for measuring an air particle concentration in a processing space provided in the chamber. An air particle concentration in the processing space provided in the chamber is measured by the measurement part. The air particle concentration is correlated with the number of particles attached to a substrate received in the chamber. Accordingly, by conducting a particle test after the air particle concentration in the processing space is lowered to an air particle concentration corresponding to the number of particles existing on the substrate which can pass the particle test, the number of times the particle test should be conducted after maintenance of the heat treatment apparatus can be reduced.Type: ApplicationFiled: July 8, 2016Publication date: November 3, 2016Inventor: Hideo NISHIHARA
-
Patent number: 9330949Abstract: Three support members made of silicon carbide are provided fixedly on an inner periphery of the support ring. The support members are inclined at an angle in the range of 15 to 30 degrees with respect to a horizontal plane. With an outer peripheral edge of a semiconductor wafer supported by the three support members, a heating treatment is performed by irradiating the semiconductor wafer with halogen light from halogen lamps. Silicon carbide absorbs the halogen light better than quartz. The support members support the outer peripheral edge of the semiconductor wafer in point contacting relationship, so that the contact between a holder and the semiconductor wafer is minimized. This minimizes the disorder of the temperature distribution of the semiconductor wafer due to the support members to achieve the uniform heating of the semiconductor wafer.Type: GrantFiled: March 11, 2013Date of Patent: May 3, 2016Assignee: SCREEN Holdings Co., Ltd.Inventors: Kenichi Yokouchi, Hideo Nishihara
-
Publication number: 20130315576Abstract: A heat treatment apparatus includes a chamber for receiving a substrate therein, and a measurement part for measuring an air particle concentration in a processing space provided in the chamber. An air particle concentration in the processing space provided in the chamber is measured by the measurement part. The air particle concentration is correlated with the number of particles attached to a substrate received in the chamber. Accordingly, by conducting a particle test after the air particle concentration in the processing space is lowered to an air particle concentration corresponding to the number of particles existing on the substrate which can pass the particle test, the number of times the particle test should be conducted after maintenance of the heat treatment apparatus can be reduced.Type: ApplicationFiled: May 16, 2013Publication date: November 28, 2013Applicant: DAINIPPON SCREEN MFG. CO. LTD.Inventor: Hideo NISHIHARA
-
Patent number: 8559799Abstract: Two-step photo-irradiation heat treatment is performed so that a total photo-irradiation time is not more than one second and that a first step of photo-irradiation of a semiconductor wafer is performed with a light-emission output that averages out at a first light-emission output and a second step of photo-irradiation of the semiconductor wafer is performed in accordance with an output waveform that peaks at a second light-emission output that is higher than both average and maximum light-emission outputs in the first step. Performing preliminary photo-irradiation with a relatively low light-emission output in the first step and then performing intense photo-irradiation with a higher peak in the second step enables the surface temperature of a semiconductor wafer to increase further with a smaller amount of energy than in conventional cases, while preventing the semiconductor wafer from shattering.Type: GrantFiled: September 21, 2009Date of Patent: October 15, 2013Assignee: Dainippon Screen Mfg. Co., Ltd.Inventors: Hideo Nishihara, Shinichi Kato
-
Publication number: 20130259457Abstract: Three support members made of silicon carbide are provided fixedly on an inner periphery of the support ring. The support members are inclined at an angle in the range of 15 to 30 degrees with respect to a horizontal plane. With an outer peripheral edge of a semiconductor wafer supported by the three support members, a heating treatment is performed by irradiating the semiconductor wafer with halogen light from halogen lamps. Silicon carbide absorbs the halogen light better than quartz. The support members support the outer peripheral edge of the semiconductor wafer in point contacting relationship, so that the contact between a holder and the semiconductor wafer is minimized. This minimizes the disorder of the temperature distribution of the semiconductor wafer due to the support members to achieve the uniform heating of the semiconductor wafer.Type: ApplicationFiled: March 11, 2013Publication date: October 3, 2013Applicant: DAINIPPON SCREEN MFG. CO., LTD.Inventors: Kenichi YOKOUCHI, Hideo NISHIHARA
-
Publication number: 20100111513Abstract: Two-step photo-irradiation heat treatment is performed so that a total photo-irradiation time is not more than one second and that a first step of photo-irradiation of a semiconductor wafer is performed with a light-emission output that averages out at a first light-emission output and a second step of photo-irradiation of the semiconductor wafer is performed in accordance with an output waveform that peaks at a second light-emission output that is higher than both average and maximum light-emission outputs in the first step. Performing preliminary photo-irradiation with a relatively low light-emission output in the first step and then performing intense photo-irradiation with a higher peak in the second step enables the surface temperature of a semiconductor wafer to increase further with a smaller amount of energy than in conventional cases, while preventing the semiconductor wafer from shattering.Type: ApplicationFiled: September 21, 2009Publication date: May 6, 2010Inventors: Hideo NISHIHARA, Shinichi KATO
-
Publication number: 20060291835Abstract: A susceptor for holding a semiconductor wafer when flash heating is performed by exposing the semiconductor wafer to a flash of light from flash lamps is formed with a recessed portion of a concave configuration having an outer diameter greater than the diameter of the semiconductor wafer, as seen in plan view. When the susceptor is viewed from above, the concave configuration of the recessed portion is greater in plan view size than the semiconductor wafer. The susceptor formed with the recessed portion holds the semiconductor wafer in such a manner that an inner wall surface of the recessed portion supports a peripheral portion of the semiconductor wafer. As a result, a gap filled with a layer of gas is formed between the lower surface of the semiconductor wafer and the upper surface of the susceptor, to prevent a crack in the semiconductor wafer when the semiconductor wafer is exposed to a flash of light from the flash lamps.Type: ApplicationFiled: June 23, 2006Publication date: December 28, 2006Inventors: Yoshihide Nozaki, Hideo Nishihara, Hiroki Kiyama
-
Patent number: 6518547Abstract: A substrate heat treatment apparatus irradiating a substrate such as a semiconductor wafer with light and performing heat treatment is provided. 19 lamps 82 are arranged on a plane in the form of a honeycomb to form a lamp group 81. The lamp group 81 has 6-fold rotation symmetry about a symmetry axis XR. A substrate W is rotated about a rotation axis XW in a plane parallel to that formed by the lamp group 81. The symmetry axis XR of the lamp group 81 and the rotation axis XW of the substrate W are displaced for relaxing peaks and bottoms of illuminance distribution on the substrate W resulting from regularity of arrangement of the lamp group 81. Consequently, fluctuation of radial illuminance distribution on the substrate W is reduced and improving uniformity is improved. When the uniformity of radial illuminance distribution on the substrate W is improved, temperature uniformity of the substrate W in heat treatment can be ensured.Type: GrantFiled: February 16, 2001Date of Patent: February 11, 2003Assignee: Dainippon Screen Mfg. Co., Ltd.Inventors: Mitsukazu Takahashi, Hideo Nishihara, Yoshio Ito
-
Publication number: 20010027969Abstract: A substrate heat treatment apparatus irradiating a substrate such as a semiconductor wafer with light and performing heat treatment is provided. 19 lamps 82 are arranged on a plane in the form of a honeycomb to form a lamp group 81. The lamp group 81 has 6-fold rotation symmetry about a symmetry axis XR. A substrate W is rotated about a rotation axis XW in a plane parallel to that formed by the lamp group 81. The symmetry axis XR of the lamp group 81 and the rotation axis XW of the substrate W are displaced for relaxing peaks and bottoms of illuminance distribution on the substrate W resulting from regularity of arrangement of the lamp group 81. Consequently, fluctuation of radial illuminance distribution on the substrate W is reduced and improving uniformity is improved. When the uniformity of radial illuminance distribution on the substrate W is improved, temperature uniformity of the substrate W in heat treatment can be ensured.Type: ApplicationFiled: February 16, 2001Publication date: October 11, 2001Applicant: Dainippon Screen Mfg. Co., Ltd.Inventors: Mitsukazu Takahashi, Hideo Nishihara, Yoshio Ito