Patents by Inventor Hideo Sakata

Hideo Sakata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8163422
    Abstract: There is provided an electrochemical device provided with an electrolytic solution comprising (I) a solvent for dissolving an electrolyte salt comprising (A) a fluorine-containing ether represented by the formula (1): Rf1—O—Rf2 wherein Rf1 and Rf2 are the same or different and each is a fluorine-containing alkyl group having 3 to 6 carbon atoms, (B) a cyclic carbonate, and (C) a chain carbonate being compatible with both of the fluorine-containing ether (A) and the cyclic carbonate (B), and (II) an electrolyte salt, in which the solvent (I) for dissolving an electrolyte salt comprises 30 to 60% by volume of the fluorine-containing ether (A), 3 to 40% by volume of the cyclic carbonate (B) and 10 to 67% by volume of the chain carbonate (C) based on the whole solvent (I), and when the electrochemical device is provided with such an electrolytic solution, no phase separation occurs even at low temperature, flame retardancy and heat resistance are excellent, solubility of an electrolyte salt is high, discharge
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: April 24, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Meiten Koh, Hideo Sakata, Hitomi Nakazawa, Michiru Tanaka, Akiyoshi Yamauchi
  • Publication number: 20120077090
    Abstract: The present invention provides a positive electrode active material for a lithium primary cell. The positive electrode active material can reduce the internal resistance of the positive electrode of a lithium primary cell and can maintain the load characteristics and the discharge voltage not only at high temperatures but also at low temperatures. The positive electrode active material includes a high-temperature treated fluoride produced by treating a fluoride of a carbon material at 200° C. to 400° C.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 29, 2012
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Hideo SAKATA, Meiten KOH, Hitomi NAKAZAWA, Tomoyo SANAGI
  • Publication number: 20120077089
    Abstract: The present invention provides a positive electrode active material for a lithium primary cell. The positive electrode active material can reduce the internal resistance of the positive electrode of a lithium primary cell and can maintain the load characteristics and the discharge voltage not only at high temperatures but also at low temperatures. The positive electrode active material includes a fluoride of a low crystalline carbon.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 29, 2012
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Hideo SAKATA, Meiten KOH, Hitomi NAKAZAWA, Tomoyo SANAGI
  • Publication number: 20110318638
    Abstract: The invention provides a stable positive-electrode mixture slurry that is not subject to gelation, a positive electrode with abundant flexibility, and a lithium secondary battery with excellent battery characteristics. The slurry comprises a positive-electrode active material, a binder, and an organic solvent, the positive-electrode active material is a lithium-containing complex metal oxide represented by Formula: Lix M1yM21?yO2 (wherein 0.4?x?1; 0.3?y?1; M1 is at least one selected from Ni or Mn; and M2 is at least one selected from Co, Al, or Fe); and the binder comprises a fluorine-containing polymer represented by Composition Formula: (VDF)m(TFE)n(HFP)l (wherein VDF is a structural unit from vinylidene fluoride; TFE is a structural unit from tetrafluoroethylene; HFP is a structural unit from hexafluoropropylene; and 0.45?m?1; 0?n?0.5; and 0?l?0.1, and m+n+l=1).
    Type: Application
    Filed: February 10, 2010
    Publication date: December 29, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Meiten Koh, Hiroyuki Arima, Hideo Sakata, Hitomi Nakazawa
  • Publication number: 20110195317
    Abstract: A solvent for a non-aqueous electrolytic solution providing a lithium secondary cell being specifically excellent in discharge capacity, rate characteristic and cycle characteristic and having improved incombustibility (safety), a non-aqueous electrolytic solution using the solvent, and further a lithium secondary cell are provided. The solvent for dissolving an electrolyte salt of a lithium secondary cell comprises at least one fluorine-containing solvent (I) selected from the group consisting of fluorine-containing ether, fluorine-containing ester and fluorine-containing chain carbonate, a fluorine-containing aromatic compound (II), in which a part or the whole of hydrogen atoms are replaced by fluorine atoms, and other carbonate (III), the non-aqueous electrolytic solution comprises the solvent and an electrolyte salt, and the lithium secondary cell uses the non-aqueous electrolytic solution.
    Type: Application
    Filed: July 29, 2009
    Publication date: August 11, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Meiten Koh, Hideo Sakata, Hitomi Nakazawa, Akiyoshi Yamauchi, Hiroyuki Arima
  • Publication number: 20110123872
    Abstract: There is provided a non-aqueous electrolytic solution assuring good solubility of an electrolyte salt and having enough cell characteristics (charge and discharge cycle characteristic, discharge capacity, and the like), and the non-aqueous electrolytic solution comprises a solvent for dissolving an electrolyte salt comprising (A) at least one fluorine-containing solvent selected from the group consisting of fluorine-containing ethers and fluorine-containing carbonates, (B) a non-fluorine-containing cyclic carbonate and (C) a chain ester represented by the formula (C): R1COOR2, wherein R1 is an alkyl group having 2 to 4 carbon atoms; R2 is an alkyl group having 1 to 4 carbon atoms or a fluorine-containing alkyl group having 1 to 4 carbon atoms, and (II) an electrolyte salt.
    Type: Application
    Filed: July 6, 2009
    Publication date: May 26, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Meiten Koh, Hitomi Nakazawa, Hideo Sakata, Michiru Kagawa, Akiyoshi Yamauchi
  • Publication number: 20110111307
    Abstract: There is provided a lithium secondary cell having specifically excellent discharge capacity, rate characteristics and further cycle characteristics and improved incombustibility (safety). The lithium secondary cell comprises a negative electrode, a non-aqueous electrolytic solution and a positive electrode, in which an active material for the negative electrode comprises lithium titanate and the non-aqueous electrolytic solution comprises a fluorine-containing solvent.
    Type: Application
    Filed: June 29, 2009
    Publication date: May 12, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Meiten Koh, Hideo Sakata, Hitomi Nakazawa, Hiroyuki Arima
  • Publication number: 20110052980
    Abstract: In the nonaqueous secondary battery of the present invention, a positive electrode mixture layer included in a positive electrode contains a lithium-containing complex oxide defined by the general formula LixM1yM2zM3vO2 (where, M1 represents at least one transition metal element selected from the group consisting of Co, Ni and Mn, M2 represents at least one metal element selected from the group consisting of Mg, Ti, Zr, Ge, Nb, Al and Sn, M3 represents an element other than Li, M1 and M2, 0.97?x<1.02, 0.8?y<1.02, 0.002?z?0.05, and 0?v?0.05) and has a density of 3.5 g/cm3 or more. A nonaqueous electrolyte contains a fluorinated nitrile compound including two or more cyano groups or a cyano group and an ester group.
    Type: Application
    Filed: April 30, 2009
    Publication date: March 3, 2011
    Inventors: Hideo Sakata, Fusaji Kita, Kumiko Ishizuka, Akiko Kuwabara, Yuan Gao
  • Publication number: 20110008682
    Abstract: There is provided a solvent for non-aqueous electrolytic solution of lithium secondary battery comprising a non-fluorine-containing cyclic carbonate (I), a non-fluorine-containing chain carbonate (II) and 1,2-dialkyl-1,2-difluoroethylene carbonate (III), wherein assuming that the total amount of (I), (II) and (III) is 100% by volume, the non-fluorine-containing cyclic carbonate (I) is contained in an amount of 10 to 50% by volume, the non-fluorine-containing chain carbonate (II) is contained in an amount of 49.9 to 89.9% by volume and the 1,2-dialkyl-1,2-difluoroethylene carbonate (III) is contained in an amount of not less than 0.1% by volume and less than 30% by volume. Also, there are provided a non-aqueous electrolytic solution comprising the mentioned solvent and a lithium secondary battery using the non-aqueous electrolytic solution.
    Type: Application
    Filed: January 22, 2009
    Publication date: January 13, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Meiten Koh, Hideo Sakata, Hitomi Nakazawa, Akiyoshi Yamauchi, Akinori Tani
  • Publication number: 20110008681
    Abstract: There is provided an electrolytic solution causing no phase separation even at low temperatures, being excellent in flame retardancy and noncombustibility, assuring high solubility of an electrolyte salt, having a high discharge capacity, being excellent in charge-discharge cycle characteristics and being suitable for electrochemical devices such as lithium ion secondary batteries.
    Type: Application
    Filed: September 12, 2008
    Publication date: January 13, 2011
    Inventors: Meiten Koh, Hitomi Nakazawa, Hideo Sakata, Michiru Tanaka, Akiyoshi Yamauchi, Aoi Nakazono
  • Publication number: 20100310943
    Abstract: There are provided a solvent for dissolving an electrolyte salt of lithium secondary battery comprising at least one fluorine-containing solvent (I) selected from the group consisting of a fluorine-containing ether, a fluorine-containing ester and fluorine-containing chain carbonate, 1,2-dialkyl-1,2-difluoroethylene carbonate (II) and other carbonate (III), a non-aqueous electrolytic solution comprising the solvent and an electrolyte salt, and a lithium secondary battery using the non-aqueous electrolytic solution. The solvent for dissolving an electrolyte salt provides a lithium secondary battery being excellent particularly in discharge capacity, rate characteristic and cycle characteristic and has enhanced incombustibility (safety) and the non-aqueous electrolytic solution comprises the solvent and an electrolyte salt.
    Type: Application
    Filed: January 22, 2009
    Publication date: December 9, 2010
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Meiten Koh, Hideo Sakata, Hitomi Nakazawa, Akiyoshi Yamauchi, Akinori Tani
  • Publication number: 20100062344
    Abstract: There is provided a non-aqueous electrolytic solution comprising an electrolyte salt, a specific fluorine-containing solvent and a fluorine-containing cyclic carbonate represented by the formula (A1): wherein X1 to X4 are the same or different and each is —H, —F, —CF3, —CHF2, —CH2F, —CF2CF3, —CH2CF3 or —CH2OCH2CF2CF3; at least one of X1 to X4 is —F, —CF3, —CF2CF3, —CH2CF3 or —CH2OCH2CF2CF3, and the non-aqueous electrolytic solution has further excellent noncombustibility and is suitable for lithium secondary batteries.
    Type: Application
    Filed: February 5, 2008
    Publication date: March 11, 2010
    Applicant: Daikin Industries, Ltd.
    Inventors: Meiten Koh, Hideo Sakata, Hitomi Nakazawa, Michiru Tanaka, Akiyoshi Yamauchi
  • Publication number: 20090305144
    Abstract: There is provided an electrochemical device provided with an electrolytic solution comprising (I) a solvent for dissolving an electrolyte salt comprising (A) a fluorine-containing ether represented by the formula (1): Rf1—O—Rf2 wherein Rf1 and Rf2 are the same or different and each is a fluorine-containing alkyl group having 3 to 6 carbon atoms, (B) a cyclic carbonate, and (C) a chain carbonate being compatible with both of the fluorine-containing ether (A) and the cyclic carbonate (B), and (II) an electrolyte salt, in which the solvent (I) for dissolving an electrolyte salt comprises 30 to 60% by volume of the fluorine-containing ether (A), 3 to 40% by volume of the cyclic carbonate (B) and 10 to 67% by volume of the chain carbonate (C) based on the whole solvent (I), and when the electrochemical device is provided with such an electrolytic solution, no phase separation occurs even at low temperature, flame retardancy and heat resistance are excellent, solubility of an electrolyte salt is high, discharge
    Type: Application
    Filed: July 12, 2007
    Publication date: December 10, 2009
    Applicant: DAIKIN INDUSTRIES , LTD.
    Inventors: Meiten Koh, Hideo Sakata, Hitomi Nakazawa, Michiru Tanaka, Akiyoshi Yamauchi
  • Patent number: 7611804
    Abstract: A nonaqueous secondary battery comprising an electrode body which comprises a positive electrode and a negative electrode laminated with a separator interposed between them, and a nonaqueous electrolyte, wherein said negative electrode comprises graphite as a negative electrode active material, and has a coating density of at least 1.70 g/cm3, pore diameter of the maximum of less than 0.5 ?m, and the logarithmic value of differential intrusion of at least 0.14 cm3/g at the pore diameter of the maximum.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: November 3, 2009
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Hideo Sakata, Hayato Higuchi, Fusaji Kita
  • Publication number: 20080102369
    Abstract: A nonaqueous secondary battery having a positive electrode having a positive electrode mixture layer, a negative electrode, and a nonaqueous electrolyte, in which the positive electrode contains, as an active material, a lithium-containing transition metal oxide containing a metal element selected from the group consisting of Mg, Ti, Zr, Ge, Nb, Al and Sn, the positive electrode mixture layer has a density of 3.
    Type: Application
    Filed: October 25, 2007
    Publication date: May 1, 2008
    Inventors: Hideo Sakata, Fusaji Kita, Kumiko Ishizuka
  • Patent number: 7285361
    Abstract: A non-aqueous secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte solution where the non-aqueous electrolyte solution contains a compound A in which a halogen group is bonded to a benzene ring and a compound B oxidized at a potential lower than that of the compound A, and the compound B is at least one selected from an aromatic compound and a heterocyclic compound. Thus, a non-aqueous secondary battery having excellent overcharging safety and being capable of ensuring storage reliability with less generation of gas during storage at a high temperature can be provided.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: October 23, 2007
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Fusaji Kita, Hideo Sakata, Haruki Kamizori
  • Patent number: 7282303
    Abstract: A non-aqueous secondary battery is provided, which has excellent overcharging safety, less generation of gas during storage at a high temperature, and can ensure storage reliability. A non-aqueous secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution contains a compound A in which a halogen group is bonded to a benzene ring and an aromatic or/and heterocyclic compound B oxidized at a potential lower than that of the compound A, a content of the compound A with respect to the total non-aqueous electrolyte solution is 1% by mass to 15% by mass, and a content of the compound B with respect to the total non-aqueous electrolyte solution is 0.005% by mass to 3% by mass.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: October 16, 2007
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Fusaji Kita, Hideo Sakata, Haruki Kamizori
  • Publication number: 20060183021
    Abstract: A non-aqueous secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte solution where the non-aqueous electrolyte solution contains a compound A in which a halogen group is bonded to a benzene ring and a compound B oxidized at a potential lower than that of the compound A, and the compound B is at least one selected from an aromatic compound and a heterocyclic compound. Thus, a non-aqueous secondary battery having excellent overcharging safety and being capable of ensuring storage reliability with less generation of gas during storage at a high temperature can be provided.
    Type: Application
    Filed: April 6, 2006
    Publication date: August 17, 2006
    Inventors: Fusaji Kita, Hideo Sakata, Haruki Kamizori
  • Publication number: 20050262004
    Abstract: A stock trading support apparatus 2 to support stock trading includes: a stock price analysis information creating section (for example, a CPU 21 and the like) to create stock price analysis information by analyzing a stock price of each brand based on stock price information; a promising brand information creating section (for example, the CPU 21 and the like) to create promising brand information by judging whether the each brand is in a good time to buy or sell based on the stock price analysis information created by the stock price analysis information creating section; and an output section (for example, a display unit 23, a printing unit 25 and the like) to output stock information containing the stock price analysis information and the promising brand information.
    Type: Application
    Filed: July 18, 2003
    Publication date: November 24, 2005
    Inventors: Hideo Sakata, Yoshie Ebe
  • Publication number: 20050221185
    Abstract: A nonaqueous secondary battery comprising an electrode body which comprises a positive electrode and a negative electrode laminated with a separator interposed between them, and a nonaqueous electrolyte, wherein said negative electrode comprises graphite as a negative electrode active material, and has a coating density of at least 1.70 g/cm3, pore diameter of the maximum of less than 0.5 ?m, and the logarithmic value of differential intrusion of at least 0.14 cm3/g at the pore diameter of the maximum.
    Type: Application
    Filed: March 30, 2005
    Publication date: October 6, 2005
    Inventors: Hideo Sakata, Hayato Higuchi, Fusaji Kita