Patents by Inventor Hideo Tanabe

Hideo Tanabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230036779
    Abstract: A LCD device having a large pixel holding capacitance includes opposedly facing first and second substrates, and liquid crystal between them. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode connected to the video signal line and a second electrode connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film above the first silicon nitride film, a capacitance electrode above the organic insulation film, and a second silicon nitride film above the capacitance electrode and below the pixel electrode. A contact hole etched in both the first and second silicon nitride films connects the second electrode and the pixel electrode to each other. A holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
    Type: Application
    Filed: October 7, 2022
    Publication date: February 2, 2023
    Inventors: Hideo TANABE, Masaru TAKABATAKE, Toshiki KANEKO, Atsushi HASEGAWA, Hiroko SEHATA
  • Patent number: 11536999
    Abstract: A LCD device having a large pixel holding capacitance includes opposedly facing first and second substrates, and liquid crystal between them. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode connected to the video signal line and a second electrode connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film above the first silicon nitride film, a capacitance electrode above the organic insulation film, and a second silicon nitride film above the capacitance electrode and below the pixel electrode. A contact hole etched in both the first and second silicon nitride films connects the second electrode and the pixel electrode to each other. A holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: December 27, 2022
    Assignees: Japan Display Inc., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Hideo Tanabe, Masaru Takabatake, Toshiki Kaneko, Atsushi Hasegawa, Hiroko Sehata
  • Patent number: 11466170
    Abstract: A conductive paste, for forming an electrode of a solar cell, includes (A) a conductive component, (B) an epoxy resin, (C) an imidazole and (D) a solvent. An amount of (C) the imidazole in the conductive paste is 0.1 to 1.0% by weight based on 100% by weight of the conductive paste excluding (D) the solvent.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: October 11, 2022
    Assignee: NAMICS CORPORATION
    Inventors: Kenji Kobayashi, Kazuo Muramatsu, Hideo Tanabe
  • Publication number: 20210181569
    Abstract: A LCD device having a large pixel holding capacitance includes opposedly facing first and second substrates, and liquid crystal between them. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode connected to the video signal line and a second electrode connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film above the first silicon nitride film, a capacitance electrode above the organic insulation film, and a second silicon nitride film above the capacitance electrode and below the pixel electrode. A contact hole etched in both the first and second silicon nitride films connects the second electrode and the pixel electrode to each other. A holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
    Type: Application
    Filed: March 1, 2021
    Publication date: June 17, 2021
    Inventors: Hideo TANABE, Masaru TAKABATAKE, Toshiki KANEKO, Atsushi HASEGAWA, Hiroko SEHATA
  • Publication number: 20210163772
    Abstract: Provided is a thermosetting conductive paste which is able to be processed at low temperature (for example, at 250° C. or less), and which enables the achievement of a conductive film that has low resistivity. The conductive paste which contains (A) a conductive component, (B) a thermosetting resin, (C) a compound having a specific structure, and (D) a solvent.
    Type: Application
    Filed: November 7, 2018
    Publication date: June 3, 2021
    Applicant: NAMICS CORPORATION
    Inventors: Kazuo MURAMATSU, Hideo TANABE
  • Publication number: 20210155819
    Abstract: A conductive paste, for forming an electrode of a solar cell, includes (A) a conductive component, (B) an epoxy resin, (C) an imidazole and (D) a solvent. An amount of (C) the imidazole in the conductive paste is 0.1 to 1.0% by weight based on 100% by weight of the conductive paste excluding (D) the solvent.
    Type: Application
    Filed: November 7, 2018
    Publication date: May 27, 2021
    Applicant: NAMICS CORPORATION
    Inventors: Kenji KOBAYASHI, Kazuo MURAMATSU, Hideo TANABE
  • Patent number: 10962815
    Abstract: A LCD device having a large pixel holding capacitance includes opposedly facing first and second substrates, and liquid crystal between them. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode connected to the video signal line and a second electrode connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film above the first silicon nitride film, a capacitance electrode above the organic insulation film, and a second silicon nitride film above the capacitance electrode and below the pixel electrode. A contact hole etched in both the first and second silicon nitride films connects the second electrode and the pixel electrode to each other. A holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: March 30, 2021
    Assignees: Japan Display Inc., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Hideo Tanabe, Masaru Takabatake, Toshiki Kaneko, Atsushi Hasegawa, Hiroko Sehata
  • Publication number: 20200150484
    Abstract: A LCD device having a large pixel holding capacitance includes opposedly facing first and second substrates, and liquid crystal between them. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode connected to the video signal line and a second electrode connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film above the first silicon nitride film, a capacitance electrode above the organic insulation film, and a second silicon nitride film above the capacitance electrode and below the pixel electrode. A contact hole etched in both the first and second silicon nitride films connects the second electrode and the pixel electrode to each other. A holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 14, 2020
    Inventors: Hideo TANABE, Masaru TAKABATAKE, Toshiki KANEKO, Atsushi HASEGAWA, Hiroko SEHATA
  • Patent number: 10564459
    Abstract: A LCD device having a large pixel holding capacitance includes opposedly facing first and second substrates, and liquid crystal between them. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode connected to the video signal line and a second electrode connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film above the first silicon nitride film, a capacitance electrode above the organic insulation film, and a second silicon nitride film above the capacitance electrode and below the pixel electrode. A contact hole etched in both the first and second silicon nitride films connects the second electrode and the pixel electrode to each other. A holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: February 18, 2020
    Assignees: Japan Display Inc., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Hideo Tanabe, Masaru Takabatake, Toshiki Kaneko, Atsushi Hasegawa, Hiroko Sehata
  • Patent number: 10449795
    Abstract: A print pattern of a printing plate used in intaglio printing includes plural partition walls and a groove-shaped cell unit. The plural partition walls are continuously extended in a printing direction, and arranged at predetermined intervals in an orthogonal direction. The cell unit is formed between the partition walls adjacent to each other, and a printing paste (conductive paste) is retained in the cell unit. Plural printing direction walls that are arranged in a zigzag manner in the printing direction are coupled to each other by a coupling walls that are arranged in the printing direction walls adjacent to each other in the printing direction, thereby forming the partition wall.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: October 22, 2019
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshihiro Kanayama, Hideo Tanabe
  • Publication number: 20190047311
    Abstract: A print pattern of a printing plate used in intaglio printing includes plural partition walls and a groove-shaped cell unit. The plural partition walls are continuously extended in a printing direction, and arranged at predetermined intervals in an orthogonal direction. The cell unit is formed between the partition walls adjacent to each other, and a printing paste (conductive paste) is retained in the cell unit. Plural printing direction walls that are arranged in a zigzag manner in the printing direction are coupled to each other by a coupling walls that are arranged in the printing direction walls adjacent to each other in the printing direction, thereby forming the partition wall.
    Type: Application
    Filed: October 16, 2018
    Publication date: February 14, 2019
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Yoshihiro KANAYAMA, Hideo TANABE
  • Publication number: 20190049775
    Abstract: A LCD device having a large pixel holding capacitance includes opposedly facing first and second substrates, and liquid crystal between them. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode connected to the video signal line and a second electrode connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film above the first silicon nitride film, a capacitance electrode above the organic insulation film, and a second silicon nitride film above the capacitance electrode and below the pixel electrode. A contact hole etched in both the first and second silicon nitride films connects the second electrode and the pixel electrode to each other. A holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
    Type: Application
    Filed: October 16, 2018
    Publication date: February 14, 2019
    Inventors: Hideo TANABE, Masaru TAKABATAKE, Toshiki KANEKO, Atsushi HASEGAWA, Hiroko SEHATA
  • Patent number: 10131175
    Abstract: A print pattern of a printing plate used in intaglio printing includes plural partition walls and a groove-shaped cell unit. The plural partition walls are continuously extended in a printing direction, and arranged at predetermined intervals in an orthogonal direction. The cell unit is formed between the partition walls adjacent to each other, and a printing paste (conductive paste) is retained in the cell unit. Plural printing direction walls that are arranged in a zigzag manner in the printing direction are coupled to each other by a coupling walls that are arranged in the printing direction walls adjacent to each other in the printing direction, thereby forming the partition wall.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: November 20, 2018
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshihiro Kanayama, Hideo Tanabe
  • Patent number: 10133103
    Abstract: A LCD device having a large pixel holding capacitance includes opposedly facing first and second substrates, and liquid crystal between them. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode connected to the video signal line and a second electrode connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film above the first silicon nitride film, a capacitance electrode above the organic insulation film, and a second silicon nitride film above the capacitance electrode and below the pixel electrode. A contact hole etched in both the first and second silicon nitride films connects the second electrode and the pixel electrode to each other. A holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: November 20, 2018
    Assignees: Japan Display Inc., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Hideo Tanabe, Masaru Takabatake, Toshiki Kaneko, Atsushi Hasegawa, Hiroko Sehata
  • Publication number: 20170343851
    Abstract: A LCD device having a large pixel holding capacitance includes opposedly facing first and second substrates, and liquid crystal between them. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode connected to the video signal line and a second electrode connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film above the first silicon nitride film, a capacitance electrode above the organic insulation film, and a second silicon nitride film above the capacitance electrode and below the pixel electrode. A contact hole etched in both the first and second silicon nitride films connects the second electrode and the pixel electrode to each other. A holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
    Type: Application
    Filed: August 18, 2017
    Publication date: November 30, 2017
    Inventors: Hideo TANABE, Masaru TAKABATAKE, Toshiki KANEKO, Atsushi HASEGAWA, Hiroko SEHATA
  • Patent number: 9766489
    Abstract: A LCD device having a large pixel holding capacitance includes opposedly facing first and second substrates, and liquid crystal between them. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode connected to the video signal line and a second electrode connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film above the first silicon nitride film, a capacitance electrode above the organic insulation film, and a second silicon nitride film above the capacitance electrode and below the pixel electrode. A contact hole etched in both the first and second silicon nitride films connects the second electrode and the pixel electrode to each other. A holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: September 19, 2017
    Assignees: JAPAN DISPLAY INC., PANASONIC LIQUID CRYSTAL DISPLAY CO., LTD.
    Inventors: Hideo Tanabe, Masaru Takabatake, Toshiki Kaneko, Atsushi Hasegawa, Hiroko Sehata
  • Publication number: 20160200129
    Abstract: A print pattern of a printing plate used in intaglio printing includes plural partition walls and a groove-shaped cell unit. The plural partition walls are continuously extended in a printing direction, and arranged at predetermined intervals in an orthogonal direction. The cell unit is formed between the partition walls adjacent to each other, and a printing paste (conductive paste) is retained in the cell unit. Plural printing direction walls that are arranged in a zigzag manner in the printing direction are coupled to each other by a coupling walls that are arranged in the printing direction walls adjacent to each other in the printing direction, thereby forming the partition wall.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 14, 2016
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Yoshihiro KANAYAMA, Hideo TANABE
  • Publication number: 20160147110
    Abstract: A LCD device having a large pixel holding capacitance includes opposedly facing first and second substrates, and liquid crystal between them. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode connected to the video signal line and a second electrode connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film above the first silicon nitride film, a capacitance electrode above the organic insulation film, and a second silicon nitride film above the capacitance electrode and below the pixel electrode. A contact hole etched in both the first and second silicon nitride films connects the second electrode and the pixel electrode to each other. A holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
    Type: Application
    Filed: January 21, 2016
    Publication date: May 26, 2016
    Inventors: Hideo TANABE, Masaru TAKABATAKE, Toshiki KANEKO, Atsushi HASEGAWA, Hiroko SEHATA
  • Patent number: 9274364
    Abstract: A LCD device having a large pixel holding capacitance includes opposedly facing first and second substrates, and liquid crystal between them. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode connected to the video signal line and a second electrode connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film above the first silicon nitride film, a capacitance electrode above the organic insulation film, and a second silicon nitride film above the capacitance electrode and below the pixel electrode. A contact hole etched in both the first and second silicon nitride films connects the second electrode and the pixel electrode to each other. A holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: March 1, 2016
    Assignees: Japan Display Inc., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Hideo Tanabe, Masaru Takabatake, Toshiki Kaneko, Atsushi Hasegawa, Hiroko Sehata
  • Publication number: 20150212364
    Abstract: A LCD device having a large pixel holding capacitance includes opposedly facing first and second substrates, and liquid crystal between them. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode connected to the video signal line and a second electrode connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film above the first silicon nitride film, a capacitance electrode above the organic insulation film, and a second silicon nitride film above the capacitance electrode and below the pixel electrode. A contact hole etched in both the first and second silicon nitride films connects the second electrode and the pixel electrode to each other. A holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
    Type: Application
    Filed: April 6, 2015
    Publication date: July 30, 2015
    Inventors: Hideo TANABE, Masaru TAKABATAKE, Toshiki KANEKO, Atsushi HASEGAWA, Hiroko SEHATA