Patents by Inventor Hideshi Abe
Hideshi Abe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12146984Abstract: A distance measurement device according to the present disclosure includes: a laser irradiation unit that irradiates a measurement target with laser light; and a laser light receiving unit including a light receiving element that receives the laser light reflected by the measurement target on a pixel-by-pixel basis. Furthermore, the pitch of the unit pixels of the light receiving element varies with location in a light receiving pixel area. A mobile apparatus according to the present disclosure is equipped with a distance measurement device having the above configuration.Type: GrantFiled: January 11, 2023Date of Patent: November 19, 2024Assignee: Sony Semiconductor Solutions CorporationInventor: Hideshi Abe
-
Publication number: 20230161011Abstract: A distance measurement device according to the present disclosure includes: a laser irradiation unit that irradiates a measurement target with laser light; and a laser light receiving unit including a light receiving element that receives the laser light reflected by the measurement target on a pixel-by-pixel basis. Furthermore, the pitch of the unit pixels of the light receiving element varies with location in a light receiving pixel area. A mobile apparatus according to the present disclosure is equipped with a distance measurement device having the above configuration.Type: ApplicationFiled: January 11, 2023Publication date: May 25, 2023Inventor: Hideshi Abe
-
Patent number: 11585904Abstract: A distance measurement device according to the present disclosure includes: a laser irradiation unit that irradiates a measurement target with laser light; and a laser light receiving unit including a light receiving element that receives the laser light reflected by the measurement target on a pixel-by-pixel basis. Furthermore, the pitch of the unit pixels of the light receiving element varies with location in a light receiving pixel area. A mobile apparatus according to the present disclosure is equipped with a distance measurement device having the above configuration.Type: GrantFiled: May 8, 2018Date of Patent: February 21, 2023Assignee: Sony Semiconductor Solutions CorporationInventor: Hideshi Abe
-
Patent number: 11570387Abstract: The present disclosure relates to a solid-state imaging device, a method for manufacturing the same, and an electronic apparatus capable of improving sensitivity while suppressing degradation of color mixture. The solid-state imaging device includes an anti-reflection portion having a moth-eye structure provided on a boundary surface on a light-receiving surface side of a photoelectric conversion region of each pixel arranged two-dimensionally, and an inter-pixel light-blocking portion provided below the boundary surface of the anti-reflection portion to block incident light. In addition, the photoelectric conversion region is a semiconductor region, and the inter-pixel light-blocking portion has a trench structure obtained by digging the semiconductor region in a depth direction at a pixel boundary. The techniques according to the present disclosure can be applied to, for example, a solid-state imaging device of a rear surface irradiation type.Type: GrantFiled: January 26, 2022Date of Patent: January 31, 2023Assignee: SONY GROUP CORPORATIONInventors: Yoshiaki Masuda, Yuki Miyanami, Hideshi Abe, Tomoyuki Hirano, Masanari Yamaguchi, Yoshiki Ebiko, Kazufumi Watanabe, Tomoharu Ogita
-
Publication number: 20220150429Abstract: The present disclosure relates to a solid-state imaging device, a method for manufacturing the same, and an electronic apparatus capable of improving sensitivity while suppressing degradation of color mixture. The solid-state imaging device includes an anti-reflection portion having a moth-eye structure provided on a boundary surface on a light-receiving surface side of a photoelectric conversion region of each pixel arranged two-dimensionally, and an inter-pixel light-blocking portion provided below the boundary surface of the anti-reflection portion to block incident light. In addition, the photoelectric conversion region is a semiconductor region, and the inter-pixel light-blocking portion has a trench structure obtained by digging the semiconductor region in a depth direction at a pixel boundary. The techniques according to the present disclosure can be applied to, for example, a solid-state imaging device of a rear surface irradiation type.Type: ApplicationFiled: January 26, 2022Publication date: May 12, 2022Applicant: SONY GROUP CORPORATIONInventors: Yoshiaki MASUDA, Yuki MIYANAMI, Hideshi ABE, Tomoyuki HIRANO, Masanari YAMAGUCHI, Yoshiki EBIKO, Kazufumi WATANABE, Tomoharu OGITA
-
Patent number: 11296245Abstract: A light receiving element includes a surface recombination prevention layer composed of a first compound semiconductor on which light is incident; a photoelectric conversion layer composed of a second compound semiconductor; and a compound semiconductor layer composed of a third compound semiconductor, the surface recombination prevention layer having a thickness of 30 nm or less. Also, there are provided an image capturing element including the light receiving element, and an image capturing apparatus including the image capturing element.Type: GrantFiled: December 11, 2019Date of Patent: April 5, 2022Assignee: Sony CorporationInventors: Shiro Uchida, Hideshi Abe, Tomomasa Watanabe, Hiroshi Yoshida
-
Patent number: 11277578Abstract: The present disclosure relates to a solid-state imaging device, a method for manufacturing the same, and an electronic apparatus capable of improving sensitivity while suppressing degradation of color mixture. The solid-state imaging device includes an anti-reflection portion having a moth-eye structure provided on a boundary surface on a light-receiving surface side of a photoelectric conversion region of each pixel arranged two-dimensionally, and an inter-pixel light-blocking portion provided below the boundary surface of the anti-reflection portion to block incident light. In addition, the photoelectric conversion region is a semiconductor region, and the inter-pixel light-blocking portion has a trench structure obtained by digging the semiconductor region in a depth direction at a pixel boundary. The techniques according to the present disclosure can be applied to, for example, a solid-state imaging device of a rear surface irradiation type.Type: GrantFiled: November 3, 2020Date of Patent: March 15, 2022Assignee: SONY CORPORATIONInventors: Yoshiaki Masuda, Yuki Miyanami, Hideshi Abe, Tomoyuki Hirano, Masanari Yamaguchi, Yoshiki Ebiko, Kazufumi Watanabe, Tomoharu Ogita
-
Patent number: 11239271Abstract: An imaging device includes a plurality of light-receiving elements arranged in a two-dimensional matrix shape. Each of the light-receiving elements includes a first electrode, a photoelectric conversion layer, and a second electrode. The photoelectric conversion layer has a laminated structure in which a first compound semiconductor layer having a first conductivity type and a second compound semiconductor layer having a second conductivity type that is a reverse conductivity type to the first conductivity type are laminated from a side of the first electrode. The second compound semiconductor layer has been removed in a region between the light-receiving elements. The first electrode and the first compound semiconductor layer are shared by the light-receiving elements. An impurity concentration of a first compound semiconductor layer near the first electrode is lower than that of a first compound semiconductor layer near the second compound semiconductor layer.Type: GrantFiled: July 30, 2020Date of Patent: February 1, 2022Assignee: Sony Semiconductor Solutions CorporationInventors: Shiro Uchida, Akiko Honjo, Tomomasa Watanabe, Hideshi Abe
-
Patent number: 11076078Abstract: The present disclosure relates to a solid-state imaging device, a method for manufacturing the same, and an electronic apparatus capable of improving sensitivity while suppressing degradation of color mixture. The solid-state imaging device includes an anti-reflection portion having a moth-eye structure provided on a boundary surface on a light-receiving surface side of a photoelectric conversion region of each pixel arranged two-dimensionally, and an inter-pixel light-blocking portion provided below the boundary surface of the anti-reflection portion to block incident light. In addition, the photoelectric conversion region is a semiconductor region, and the inter-pixel light-blocking portion has a trench structure obtained by digging the semiconductor region in a depth direction at a pixel boundary. The techniques according to the present disclosure can be applied to, for example, a solid-state imaging device of a rear surface irradiation type.Type: GrantFiled: May 28, 2020Date of Patent: July 27, 2021Assignee: SONY CORPORATIONInventors: Yoshiaki Masuda, Yuki Miyanami, Hideshi Abe, Tomoyuki Hirano, Masanari Yamaguchi, Yoshiki Ebiko, Kazufumi Watanabe, Tomoharu Ogita
-
Publication number: 20210075942Abstract: The present disclosure relates to a solid-state imaging device, a method for manufacturing the same, and an electronic apparatus capable of improving sensitivity while suppressing degradation of color mixture. The solid-state imaging device includes an anti-reflection portion having a moth-eye structure provided on a boundary surface on a light-receiving surface side of a photoelectric conversion region of each pixel arranged two-dimensionally, and an inter-pixel light-blocking portion provided below the boundary surface of the anti-reflection portion to block incident light. In addition, the photoelectric conversion region is a semiconductor region, and the inter-pixel light-blocking portion has a trench structure obtained by digging the semiconductor region in a depth direction at a pixel boundary. The techniques according to the present disclosure can be applied to, for example, a solid-state imaging device of a rear surface irradiation type.Type: ApplicationFiled: November 3, 2020Publication date: March 11, 2021Applicant: SONY CORPORATIONInventors: Yoshiaki MASUDA, Yuki MIYANAMI, Hideshi ABE, Tomoyuki HIRANO, Masanari YAMAGUCHI, Yoshiki EBIKO, Kazufumi WATANABE, Tomoharu OGITA
-
Patent number: 10855893Abstract: The present disclosure relates to a solid-state imaging device, a method for manufacturing the same, and an electronic apparatus capable of improving sensitivity while suppressing degradation of color mixture. The solid-state imaging device includes an anti-reflection portion having a moth-eye structure provided on a boundary surface on a light-receiving surface side of a photoelectric conversion region of each pixel arranged two-dimensionally, and an inter-pixel light-blocking portion provided below the boundary surface of the anti-reflection portion to block incident light. In addition, the photoelectric conversion region is a semiconductor region, and the inter-pixel light-blocking portion has a trench structure obtained by digging the semiconductor region in a depth direction at a pixel boundary. The techniques according to the present disclosure can be applied to, for example, a solid-state imaging device of a rear surface irradiation type.Type: GrantFiled: January 10, 2020Date of Patent: December 1, 2020Assignee: Sony CorporationInventors: Yoshiaki Masuda, Yuki Miyanami, Hideshi Abe, Tomoyuki Hirano, Masanari Yamaguchi, Yoshiki Ebiko, Kazufumi Watanabe, Tomoharu Ogita
-
Publication number: 20200365637Abstract: An imaging device includes a plurality of light-receiving elements arranged in a two-dimensional matrix shape. Each of the light-receiving elements includes a first electrode, a photoelectric conversion layer, and a second electrode. The photoelectric conversion layer has a laminated structure in which a first compound semiconductor layer having a first conductivity type and a second compound semiconductor layer having a second conductivity type that is a reverse conductivity type to the first conductivity type are laminated from a side of the first electrode. The second compound semiconductor layer has been removed in a region between the light-receiving elements. The first electrode and the first compound semiconductor layer are shared by the light-receiving elements. An impurity concentration of a first compound semiconductor layer near the first electrode is lower than that of a first compound semiconductor layer near the second compound semiconductor layer.Type: ApplicationFiled: July 30, 2020Publication date: November 19, 2020Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATIONInventors: Shiro UCHIDA, Akiko HONJO, Tomomasa WATANABE, Hideshi ABE
-
Publication number: 20200296263Abstract: The present disclosure relates to a solid-state imaging device, a method for manufacturing the same, and an electronic apparatus capable of improving sensitivity while suppressing degradation of color mixture. The solid-state imaging device includes an anti-reflection portion having a moth-eye structure provided on a boundary surface on a light-receiving surface side of a photoelectric conversion region of each pixel arranged two-dimensionally, and an inter-pixel light-blocking portion provided below the boundary surface of the anti-reflection portion to block incident light. In addition, the photoelectric conversion region is a semiconductor region, and the inter-pixel light-blocking portion has a trench structure obtained by digging the semiconductor region in a depth direction at a pixel boundary. The techniques according to the present disclosure can be applied to, for example, a solid-state imaging device of a rear surface irradiation type.Type: ApplicationFiled: May 28, 2020Publication date: September 17, 2020Applicant: SONY CORPORATIONInventors: Yoshiaki MASUDA, Yuki MIYANAMI, Hideshi ABE, Tomoyuki HIRANO, Masanari YAMAGUCHI, Yoshiki EBIKO, Kazufumi WATANABE, Tomoharu OGITA
-
Patent number: 10771664Abstract: The present disclosure relates to a solid-state imaging device, a method for manufacturing the same, and an electronic apparatus capable of improving sensitivity while suppressing degradation of color mixture. The solid-state imaging device includes an anti-reflection portion having a moth-eye structure provided on a boundary surface on a light-receiving surface side of a photoelectric conversion region of each pixel arranged two-dimensionally, and an inter-pixel light-blocking portion provided below the boundary surface of the anti-reflection portion to block incident light. In addition, the photoelectric conversion region is a semiconductor region, and the inter-pixel light-blocking portion has a trench structure obtained by digging the semiconductor region in a depth direction at a pixel boundary. The techniques according to the present disclosure can be applied to, for example, a solid-state imaging device of a rear surface irradiation type.Type: GrantFiled: January 18, 2019Date of Patent: September 8, 2020Assignee: Sony CorporationInventors: Yoshiaki Masuda, Yuki Miyanami, Hideshi Abe, Tomoyuki Hirano, Masanari Yamaguchi, Yoshiki Ebiko, Kazufumi Watanabe, Tomoharu Ogita
-
Patent number: 10741595Abstract: An imaging device includes a plurality of light-receiving elements arranged in a two-dimensional matrix shape. Each of the light-receiving elements includes a first electrode, a photoelectric conversion layer, and a second electrode. The photoelectric conversion layer has a laminated structure in which a first compound semiconductor layer having a first conductivity type and a second compound semiconductor layer having a second conductivity type that is a reverse conductivity type to the first conductivity type are laminated from a side of the first electrode. The second compound semiconductor layer has been removed in a region between the light-receiving elements. The first electrode and the first compound semiconductor layer are shared by the light-receiving elements. An impurity concentration of a first compound semiconductor layer near the first electrode is lower than that of a first compound semiconductor layer near the second compound semiconductor layer.Type: GrantFiled: April 26, 2019Date of Patent: August 11, 2020Assignee: Sony Semiconductor Solutions CorporationInventors: Shiro Uchida, Akiko Honjo, Tomomasa Watanabe, Hideshi Abe
-
Publication number: 20200154011Abstract: The present disclosure relates to a solid-state imaging device, a method for manufacturing the same, and an electronic apparatus capable of improving sensitivity while suppressing degradation of color mixture. The solid-state imaging device includes an anti-reflection portion having a moth-eye structure provided on a boundary surface on a light-receiving surface side of a photoelectric conversion region of each pixel arranged two-dimensionally, and an inter-pixel light-blocking portion provided below the boundary surface of the anti-reflection portion to block incident light. In addition, the photoelectric conversion region is a semiconductor region, and the inter-pixel light-blocking portion has a trench structure obtained by digging the semiconductor region in a depth direction at a pixel boundary. The techniques according to the present disclosure can be applied to, for example, a solid-state imaging device of a rear surface irradiation type.Type: ApplicationFiled: January 10, 2020Publication date: May 14, 2020Applicant: SONY CORPORATIONInventors: Yoshiaki MASUDA, Yuki MIYANAMI, Hideshi ABE, Tomoyuki HIRANO, Masanari YAMAGUCHI, Yoshiki EBIKO, Kazufumi WATANABE, Tomoharu OGITA
-
Publication number: 20200119210Abstract: A light receiving element includes a surface recombination prevention layer composed of a first compound semiconductor on which light is incident; a photoelectric conversion layer composed of a second compound semiconductor; and a compound semiconductor layer composed of a third compound semiconductor, the surface recombination prevention layer having a thickness of 30 nm or less. Also, there are provided an image capturing element including the light receiving element, and an image capturing apparatus including the image capturing element.Type: ApplicationFiled: December 11, 2019Publication date: April 16, 2020Inventors: Shiro UCHIDA, Hideshi ABE, Tomomasa WATANABE, Hiroshi YOSHIDA
-
Publication number: 20200081097Abstract: A distance measurement device according to the present disclosure includes: a laser irradiation unit that irradiates a measurement target with laser light; and a laser light receiving unit including a light receiving element that receives the laser light reflected by the measurement target on a pixel-by-pixel basis. Furthermore, the pitch of the unit pixels of the light receiving element varies with location in a light receiving pixel area. A mobile apparatus according to the present disclosure is equipped with a distance measurement device having the above configuration.Type: ApplicationFiled: May 8, 2018Publication date: March 12, 2020Inventor: Hideshi Abe
-
Patent number: 10412287Abstract: The present disclosure relates to a solid-state imaging device, a method for manufacturing the same, and an electronic apparatus capable of improving sensitivity while suppressing degradation of color mixture. The solid-state imaging device includes an anti-reflection portion having a moth-eye structure provided on a boundary surface on a light-receiving surface side of a photoelectric conversion region of each pixel arranged two-dimensionally, and an inter-pixel light-blocking portion provided below the boundary surface of the anti-reflection portion to block incident light. In addition, the photoelectric conversion region is a semiconductor region, and the inter-pixel light-blocking portion has a trench structure obtained by digging the semiconductor region in a depth direction at a pixel boundary. The techniques according to the present disclosure can be applied to, for example, a solid-state imaging device of a rear surface irradiation type.Type: GrantFiled: January 18, 2019Date of Patent: September 10, 2019Assignee: Sony CorporationInventors: Yoshiaki Masuda, Yuki Miyanami, Hideshi Abe, Tomoyuki Hirano, Masanari Yamaguchi, Yoshiki Ebiko, Kazufumi Watanabe, Tomoharu Ogita
-
Publication number: 20190252437Abstract: An imaging device includes a plurality of light-receiving elements arranged in a two-dimensional matrix shape. Each of the light-receiving elements includes a first electrode, a photoelectric conversion layer, and a second electrode. The photoelectric conversion layer has a laminated structure in which a first compound semiconductor layer having a first conductivity type and a second compound semiconductor layer having a second conductivity type that is a reverse conductivity type to the first conductivity type are laminated from a side of the first electrode. The second compound semiconductor layer has been removed in a region between the light-receiving elements. The first electrode and the first compound semiconductor layer are shared by the light-receiving elements. An impurity concentration of a first compound semiconductor layer near the first electrode is lower than that of a first compound semiconductor layer near the second compound semiconductor layer.Type: ApplicationFiled: April 26, 2019Publication date: August 15, 2019Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATIONInventors: Shiro UCHIDA, Akiko HONJO, Tomomasa WATANABE, Hideshi ABE