Patents by Inventor Hidetaka Oshio

Hidetaka Oshio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12112949
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Grant
    Filed: October 10, 2022
    Date of Patent: October 8, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Rajesh Prasad, Sarah Bobek, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee, Harry Whitesell, Hidetaka Oshio, Dong Hyung Lee, Deven Matthew Raj Mittal, Scott Falk, Venkataramana R. Chavva
  • Patent number: 12014927
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Grant
    Filed: October 11, 2022
    Date of Patent: June 18, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Rajesh Prasad, Sarah Bobek, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee, Harry Whitesell, Hidetaka Oshio, Dong Hyung Lee, Deven Matthew Raj Mittal, Scott Falk, Venkataramana R. Chavva
  • Publication number: 20230093450
    Abstract: The present disclosure provides forming nanostructures utilizing multiple patterning process with good profile control and feature transfer integrity. In one embodiment, a method for forming features on a substrate includes forming a first mandrel layer on a material layer disposed on a substrate. A first spacer layer is conformally formed on sidewalls of the first mandrel layer, wherein the first spacer layer comprises a doped silicon material. The first mandrel layer is selectively removed while keeping the first spacer layer. A second spacer layer is conformally formed on sidewalls of the first spacer layer and selectively removing the first spacer layer while keeping the second spacer layer.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 23, 2023
    Inventors: Tzu-shun YANG, Rui CHENG, Karthik JANAKIRAMAN, Zubin HUANG, Diwakar KEDLAYA, Meenakshi GUPTA, Srinivas GUGGILLA, Yung-chen LIN, Hidetaka OSHIO, Chao LI, Gene LEE
  • Publication number: 20230041963
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Application
    Filed: October 11, 2022
    Publication date: February 9, 2023
    Inventors: Rajesh PRASAD, Sarah BOBEK, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE, Harry WHITESELL, Hidetaka OSHIO, Dong Hyung LEE, Deven Matthew Raj MITTAL, Scott FALK, Venkataramana R. CHAVVA
  • Publication number: 20230029929
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Application
    Filed: October 10, 2022
    Publication date: February 2, 2023
    Inventors: Rajesh PRASAD, Sarah BOBEK, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE, Harry WHITESELL, Hidetaka OSHIO, Dong Hyung LEE, Deven Matthew Raj MITTAL, Scott FALK, Venkataramana R. CHAVVA
  • Patent number: 11527408
    Abstract: The present disclosure provides forming nanostructures utilizing multiple patterning process with good profile control and feature transfer integrity. In one embodiment, a method for forming features on a substrate includes forming a first mandrel layer on a material layer disposed on a substrate. A first spacer layer is conformally formed on sidewalls of the first mandrel layer, wherein the first spacer layer comprises a doped silicon material. The first mandrel layer is selectively removed while keeping the first spacer layer. A second spacer layer is conformally formed on sidewalls of the first spacer layer and selectively removing the first spacer layer while keeping the second spacer layer.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: December 13, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Tzu-shun Yang, Rui Cheng, Karthik Janakiraman, Zubin Huang, Diwakar Kedlaya, Meenakshi Gupta, Srinivas Guggilla, Yung-chen Lin, Hidetaka Oshio, Chao Li, Gene Lee
  • Patent number: 11469107
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: October 11, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Rajesh Prasad, Sarah Bobek, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee, Harry Whitesell, Hidetaka Oshio, Dong Hyung Lee, Deven Matthew Raj Mittal, Scott Falk, Venkataramana R. Chavva
  • Patent number: 11315787
    Abstract: The present disclosure provides forming nanostructures utilizing multiple patterning process with good profile control and feature transfer integrity. In one embodiment, a method for forming features on a substrate includes forming a mandrel layer on a substrate, conformally forming a spacer layer on the mandrel layer, wherein the spacer layer is a doped silicon material, and patterning the spacer layer. In another embodiment, a method for forming features on a substrate includes conformally forming a spacer layer on a mandrel layer on a substrate, wherein the spacer layer is a doped silicon material, selectively removing a portion of the spacer layer using a first gas mixture, and selectively removing the mandrel layer using a second gas mixture different from the first gas mixture.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: April 26, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Tzu-shun Yang, Rui Cheng, Karthik Janakiraman, Zubin Huang, Diwakar Kedlaya, Meenakshi Gupta, Srinivas Guggilla, Yung-chen Lin, Hidetaka Oshio, Chao Li, Gene Lee
  • Publication number: 20220013359
    Abstract: In an embodiment, a method for forming features for semiconductor processing. A first mandrel and a second mandrel are formed on a substrate. A first spacer is formed along a first sidewall of the first mandrel, and a second spacer is formed along a second sidewall of the second mandrel. A gap is defined between the first spacer and the second spacer. The gap is filled by a gap-filling material. In some examples, the gap-filling material includes a doped silicon material. In some examples, the first spacer and the second spacer each include a doped silicon material.
    Type: Application
    Filed: August 27, 2021
    Publication date: January 13, 2022
    Inventors: Takehito KOSHIZAWA, Rui CHENG, Tejinder SINGH, Hidetaka OSHIO
  • Patent number: 11145509
    Abstract: In an embodiment, a method for forming features for semiconductor processing. A first mandrel and a second mandrel are formed on a substrate. A first spacer is formed along a first sidewall of the first mandrel, and a second spacer is formed along a second sidewall of the second mandrel. A gap is defined between the first spacer and the second spacer. The gap is filled by a gap-filling material. In some examples, the gap-filling material includes a doped silicon material. In some examples, the first spacer and the second spacer each include a doped silicon material.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: October 12, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Takehito Koshizawa, Rui Cheng, Tejinder Singh, Hidetaka Oshio
  • Publication number: 20200373159
    Abstract: In an embodiment, a method for forming features for semiconductor processing. A first mandrel and a second mandrel are formed on a substrate. A first spacer is formed along a first sidewall of the first mandrel, and a second spacer is formed along a second sidewall of the second mandrel. A gap is defined between the first spacer and the second spacer. The gap is filled by a gap-filling material. In some examples, the gap-filling material includes a doped silicon material. In some examples, the first spacer and the second spacer each include a doped silicon material.
    Type: Application
    Filed: April 20, 2020
    Publication date: November 26, 2020
    Inventors: Takehito KOSHIZAWA, Rui CHENG, Tejinder SINGH, Hidetaka OSHIO
  • Publication number: 20200357640
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Inventors: Rajesh PRASAD, Sarah BOBEK, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE, Harry WHITESELL, Hidetaka OSHIO, Dong Hyung LEE, Deven Matthew RAJ MITTAL, Scott FALK, Venkataramana R. CHAVVA
  • Publication number: 20200335338
    Abstract: The present disclosure provides forming nanostructures utilizing multiple patterning process with good profile control and feature transfer integrity. In one embodiment, a method for forming features on a substrate includes forming a mandrel layer on a substrate, conformally forming a spacer layer on the mandrel layer, wherein the spacer layer is a doped silicon material, and patterning the spacer layer. In another embodiment, a method for forming features on a substrate includes conformally forming a spacer layer on a mandrel layer on a substrate, wherein the spacer layer is a doped silicon material, selectively removing a portion of the spacer layer using a first gas mixture, and selectively removing the mandrel layer using a second gas mixture different from the first gas mixture.
    Type: Application
    Filed: March 17, 2020
    Publication date: October 22, 2020
    Inventors: Tzu-Shun YANG, Rui CHENG, Karthik JANAKIRAMAN, Zubin HUANG, Diwakar KADLAYA, Meenakshi GUPTA, Srinivas GUGGILLA, Yung-chen LIN, Hidetaka OSHIO, Chao LI, Gene LEE
  • Publication number: 20200335339
    Abstract: The present disclosure provides forming nanostructures utilizing multiple patterning process with good profile control and feature transfer integrity. In one embodiment, a method for forming features on a substrate includes forming a first mandrel layer on a material layer disposed on a substrate. A first spacer layer is conformally formed on sidewalls of the first mandrel layer, wherein the first spacer layer comprises a doped silicon material. The first mandrel layer is selectively removed while keeping the first spacer layer. A second spacer layer is conformally formed on sidewalls of the first spacer layer and selectively removing the first spacer layer while keeping the second spacer layer.
    Type: Application
    Filed: May 5, 2020
    Publication date: October 22, 2020
    Inventors: Tzu-shun YANG, Rui CHENG, Karthik JANAKIRAMAN, Zubin HUANG, Diwakar KEDLAYA, Meenakshi GUPTA, Srinivas GUGGILLA, Yung-chen LIN, Hidetaka OSHIO, Chao LI, Gene LEE
  • Patent number: 10727059
    Abstract: Implementations described herein generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of amorphous carbon films on a substrate. In one implementation, a method of forming an amorphous carbon film is provided. The method comprises depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further comprises implanting a dopant or inert species into the amorphous carbon film in a second processing region. The dopant or inert species is selected from carbon, boron, nitrogen, silicon, phosphorous, argon, helium, neon, krypton, xenon or combinations thereof. The method further comprises patterning the doped amorphous carbon film. The method further comprises etching the underlayer.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sarah Bobek, Prashant Kumar Kulshreshtha, Rajesh Prasad, Kwangduk Douglas Lee, Harry Whitesell, Hidetaka Oshio, Dong Hyung Lee, Deven Matthew Raj Mittal
  • Publication number: 20190172714
    Abstract: Implementations described herein generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of amorphous carbon films on a substrate. In one implementation, a method of forming an amorphous carbon film is provided. The method comprises depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further comprises implanting a dopant or inert species into the amorphous carbon film in a second processing region. The dopant or inert species is selected from carbon, boron, nitrogen, silicon, phosphorous, argon, helium, neon, krypton, xenon or combinations thereof. The method further comprises patterning the doped amorphous carbon film. The method further comprises etching the underlayer.
    Type: Application
    Filed: November 13, 2018
    Publication date: June 6, 2019
    Inventors: Sarah BOBEK, Prashant KUMAR KULSHRESHTHA, Rajesh PRASAD, Kwangduk Douglas LEE, Harry WHITESELL, Hidetaka OSHIO, Dong Hyung LEE, Deven Matthew Raj MITTAL
  • Publication number: 20040192051
    Abstract: A method of forming a damascene structure including an insulator portion having a barrier layer comprising silicon carbide (SiC) or silicon carbon nitride (SiCN) on a metal wiring layer formed on a substrate. The method includes the steps of supplying a gas mixture comprising trifluoromethane (CHF3) to a chamber accommodating the substrate and generating a plasma in the chamber, thereby forming a via hole communicating with the metal wiring layer through the first layer containing silicon carbide (SiC) or silicon carbon nitride (SiCN).
    Type: Application
    Filed: October 30, 2003
    Publication date: September 30, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Hiroya Tanaka, Yoshio Ishikawa, Keiji Horioka, Yuzuru Ueda, Hidetaka Oshio
  • Publication number: 20040082251
    Abstract: The present invention generally provides a gas distribution system that allows a user to manually or automatically vary the gas distribution into a process chamber and across the substrate surface without having to physically enter the process chamber.
    Type: Application
    Filed: October 29, 2002
    Publication date: April 29, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Joseph Bach, Hidetaka Oshio