Patents by Inventor Hidetaka Sawada
Hidetaka Sawada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230349839Abstract: An electron microscope includes an irradiation optical system that focuses electron beams and scans a specimen with the focused electron beams; a deflector that deflects the electron beams transmitted through the specimen; a detector that detects the electron beams transmitted through the specimen; and a control unit that controls the irradiation optical system and the deflector The control unit causes the irradiation optical system to scan the specimen with the electron beams so that the electron beams have a plurality of irradiation positions on the specimen. The control unit causes the deflector to repeatedly deflect the electron beams transmitted through each of the irradiation positions, so that a plurality of electron beams which have the same irradiation position and different incident angle ranges with respect to the specimen are caused to sequentially enter the detector.Type: ApplicationFiled: March 23, 2023Publication date: November 2, 2023Inventors: Hidetaka Sawada, Takeshi Kaneko, Shigeyuki Morishita, Yuji Kohno
-
Publication number: 20230268155Abstract: An aberration correcting device includes a first multipole which generates a hexapole field; a second multipole which generates a hexapole field with a polarity opposite to a polarity of the hexapole filed generated by the first multipole; a third multipole which is disposed between the first multipole and the second multipole and generates an octupole field; a first transfer lens system disposed between the first multipole and the third multipole; and a second transfer lens system disposed between the third multipole and the second multipole. The first transfer lens system includes a plurality of fourth multipoles which generate a field in which an electromagnetic-field superposed quadrupole field and an octupole field are superposed; and the second transfer lens system includes a plurality of fifth multipoles which generate a field in which an electromagnetic-field superposed quadrupole field and an octupole field are superposed.Type: ApplicationFiled: February 15, 2023Publication date: August 24, 2023Inventors: Shigeyuki Morishita, Hidetaka Sawada
-
Patent number: 10720301Abstract: An aberration corrector for an electron microscope includes a geometric aberration corrector provided with a transfer lens system, wherein the transfer lens system includes an optical system for chromatic aberration correction, the optical system for chromatic aberration correction has a first portion, a second portion, and a third portion disposed along an optical axis, and each of the first portion, the second portion, and the third portion has a thickness in a direction along the optical axis and generates an electromagnetic field having two-fold symmetry in which an electric field having two-fold symmetry and a magnetic field having two-fold symmetry are superimposed.Type: GrantFiled: January 23, 2019Date of Patent: July 21, 2020Assignee: JEOL Ltd.Inventor: Hidetaka Sawada
-
Patent number: 10541111Abstract: A distortion measurement method for an electron microscope image includes: loading a distortion measurement specimen having structures arranged in a lattice to a specimen plane of an electron microscope or a plane conjugate to the specimen plane in order to obtain an electron microscope image of the distortion measurement specimen; and measuring a distortion from the obtained electron microscope image of the distortion measurement specimen.Type: GrantFiled: May 25, 2018Date of Patent: January 21, 2020Assignee: JEOL Ltd.Inventors: Yuji Konyuba, Kazuya Omoto, Hidetaka Sawada
-
Publication number: 20190228945Abstract: An aberration corrector for an electron microscope includes a geometric aberration corrector provided with a transfer lens system, wherein the transfer lens system includes an optical system for chromatic aberration correction, the optical system for chromatic aberration correction has a first portion, a second portion, and a third portion disposed along an optical axis, and each of the first portion, the second portion, and the third portion has a thickness in a direction along the optical axis and generates an electromagnetic field having two-fold symmetry in which an electric field having two-fold symmetry and a magnetic field having two-fold symmetry are superimposed.Type: ApplicationFiled: January 23, 2019Publication date: July 25, 2019Inventor: Hidetaka Sawada
-
Publication number: 20180342370Abstract: A distortion measurement method for an electron microscope image includes: loading a distortion measurement specimen having structures arranged in a lattice to a specimen plane of an electron microscope or a plane conjugate to the specimen plane in order to obtain an electron microscope image of the distortion measurement specimen; and measuring a distortion from the obtained electron microscope image of the distortion measurement specimen.Type: ApplicationFiled: May 25, 2018Publication date: November 29, 2018Inventors: Yuji Konyuba, Kazuya Omoto, Hidetaka Sawada
-
Publication number: 20180166252Abstract: There is provided a liner tube capable of reducing the effects of magnetic field variations on an electron beam. The liner tube (10) is disposed inside the electron optical column (2) of an electron microscope (100). The interior of the tube (10) forms a path for the electron beam (EB). The liner tube (10) has a first cylindrical member (110) that is made of copper, gold, silver, or an alloy consisting principally of one of these metals.Type: ApplicationFiled: December 8, 2016Publication date: June 14, 2018Inventors: Hidetaka Sawada, Yu Jimbo, Masashi Shimizu
-
Patent number: 9997327Abstract: There is provided a liner tube capable of reducing the effects of magnetic field variations on an electron beam. The liner tube (10) is disposed inside the electron optical column (2) of an electron microscope (100). The interior of the tube (10) forms a path for the electron beam (EB). The liner tube (10) has a first cylindrical member (110) that is made of copper, gold, silver, or an alloy consisting principally of one of these metals.Type: GrantFiled: December 8, 2016Date of Patent: June 12, 2018Assignee: JEOL Ltd.Inventors: Hidetaka Sawada, Yu Jimbo, Masashi Shimizu
-
Patent number: 9859095Abstract: An electron microscope is provided which can measure, with high sensitivity and high positional resolution, an amount of deflection of an electron beam occurring when it is transmitted through a sample. The electron microscope (100) is adapted to measure the amount of deflection of the electron beam (EB) when it is transmitted through the sample (S), and has an electron beam source (10) producing the electron beam (EB), an illumination lens system for focusing the electron beam (EB) onto the sample (S), an aperture (30) having an electron beam blocking portion (32) for providing a shield between a central portion (EB1) and an outer peripheral portion (EB2) of the cross section of the beam (EB) impinging on the sample (S), and a segmented detector (20) having a detection surface (22) for detecting the electron beam (EB) transmitted through the sample (S). The detection surface (22) is divided into a plurality of detector segments (D1-D4).Type: GrantFiled: May 11, 2016Date of Patent: January 2, 2018Assignees: The University of Tokyo, JEOL Ltd.Inventors: Naoya Shibata, Yuji Kohno, Hidetaka Sawada
-
Patent number: 9793088Abstract: An aberration corrector has two stages of dodecapole (12-pole) elements each of which has first through twelfth poles arranged in this order. Exciting coils of the (4n+1)th poles and the exciting coils of the (4n+4)th poles are connected with a first reversible power supply in series (where n=0, 1, 2) to produce magnetic fields which are identical in absolute value but mutually opposite in sense relative to the optical axis within a plane perpendicular to the axis. The exciting coils of the (4n+3)th poles and the exciting coils of the (4n+2)th poles are connected with a second reversible power supply in series to produce magnetic fields which are identical in absolute value but mutually opposite in sense relative to the optical axis within the plane perpendicular to the axis.Type: GrantFiled: September 22, 2009Date of Patent: October 17, 2017Assignee: JEOL Ltd.Inventors: Hidetaka Sawada, Yukihito Kondoh
-
Publication number: 20170025248Abstract: An electron microscope is provided which can measure, with high sensitivity and high positional resolution, an amount of deflection of an electron beam occurring when it is transmitted through a sample. The electron microscope (100) is adapted to measure the amount of deflection of the electron beam (EB) when it is transmitted through the sample (S), and has an electron beam source (10) producing the electron beam (EB), an illumination lens system for focusing the electron beam (EB) onto the sample (S), an aperture (30) having an electron beam blocking portion (32) for providing a shield between a central portion (EB1) and an outer peripheral portion (EB2) of the cross section of the beam (EB) impinging on the sample (S), and a segmented detector (20) having a detection surface (22) for detecting the electron beam (EB) transmitted through the sample (S). The detection surface (22) is divided into a plurality of detector segments (D1-D4).Type: ApplicationFiled: May 11, 2016Publication date: January 26, 2017Inventors: Naoya Shibata, Yuji Kohno, Hidetaka Sawada
-
Patent number: 9349565Abstract: A multipole lens (100) which can produce static magnetic fields showing different strengths in the direction of travel of an electron beam has lens subasssemblies (10a, 10b, 10c) stacked on top of each other. The lens subassemblies (10a, 10b, 10c) have yokes (14a, 14b, 14c), respectively, and polar elements (12a, 12b, 12c), respectively. The polar elements (12a, 12b, 12c) have base portions (13a, 13b, 13c), respectively, magnetically coupled to the yokes (14a, 14b, 14c), respectively, and front end portions (11a, 11b, 11c), respectively, magnetically coupled to the base portions (13a, 13b, 13c), respectively. Magnetic field separators (20, 22) made of a nonmagnetic material are mounted between the front end portions (11a, 11b, 11c) which are successively adjacent to each other in the direction of stacking of the lens subassemblies (10a, 10b, 10c).Type: GrantFiled: April 16, 2015Date of Patent: May 24, 2016Assignee: JEOL Ltd.Inventor: Hidetaka Sawada
-
Patent number: 9256068Abstract: A spherical aberration corrector is offered which permits a correction of deviation of the circularity of at least one of an image and a diffraction pattern and a correction of on-axis aberrations to be carried out independently. The spherical aberration corrector (100) is for use with a charged particle beam instrument (1) for obtaining the image and the diffraction pattern and has a hexapole field generating portion (110) for producing plural stages of hexapole fields, an octopole field superimposing portion (120) for superimposing an octopole on at least one of the plural stages of hexapole fields to correct deviation of the circularity of at least one of the image and diffraction pattern, and a deflection portion (130) for deflecting a charged particle beam.Type: GrantFiled: July 23, 2014Date of Patent: February 9, 2016Assignee: JEOL Ltd.Inventors: Hidetaka Sawada, Yu Jimbo
-
Publication number: 20150332889Abstract: A multipole lens (100) which can produce static magnetic fields showing different strengths in the direction of travel of an electron beam has lens subasssemblies (10a, 10b, 10c) stacked on top of each other. The lens subassemblies (10a, 10b, 10c) have yokes (14a, 14b, 14c), respectively, and polar elements (12a, 12b, 12c), respectively. The polar elements (12a, 12b, 12c) have base portions (13a, 13b, 13c), respectively, magnetically coupled to the yokes (14a, 14b, 14c), respectively, and front end portions (11a, 11b, 11c), respectively, magnetically coupled to the base portions (13a, 13b, 13c), respectively. Magnetic field separators (20, 22) made of a nonmagnetic material are mounted between the front end portions (11a, 11b, 11c) which are successively adjacent to each other in the direction of stacking of the lens subassemblies (10a, 10b, 10c).Type: ApplicationFiled: April 16, 2015Publication date: November 19, 2015Inventor: Hidetaka Sawada
-
Publication number: 20150029593Abstract: A spherical aberration corrector is offered which permits a correction of deviation of the circularity of at least one of an image and a diffraction pattern and a correction of on-axis aberrations to be carried out independently. The spherical aberration corrector (100) is for use with a charged particle beam instrument (1) for obtaining the image and the diffraction pattern and has a hexapole field generating portion (110) for producing plural stages of hexapole fields, an octopole field superimposing portion (120) for superimposing an octopole on at least one of the plural stages of hexapole fields to correct deviation of the circularity of at least one of the image and diffraction pattern, and a deflection portion (130) for deflecting a charged particle beam.Type: ApplicationFiled: July 23, 2014Publication date: January 29, 2015Inventors: Hidetaka Sawada, Yu Jimbo
-
Publication number: 20140367585Abstract: A method for axial alignment of a charged particle beam relative to at least three stages of multipole elements and a charged particle beam system capable of making the axial alignment. Some parts of the orbit of the beam or the distributions of three astigmatic fields, or both, are simultaneously translated in a direction perpendicular to the optical axis such that astigmatisms of the same order and same type due to axial deviations between successive ones of the astigmatic fields cancel.Type: ApplicationFiled: August 27, 2014Publication date: December 18, 2014Inventors: Hidetaka Sawada, Takeo Sasaki
-
Patent number: 8907298Abstract: A method for axial alignment of a charged particle beam relative to at least three stages of multipole elements and a charged particle beam system capable of making the axial alignment. Some parts of the orbit of the beam or the distributions of three astigmatic fields, or both, are simultaneously translated in a direction perpendicular to the optical axis such that astigmatisms of the same order and same type due to axial deviations between successive ones of the astigmatic fields cancel.Type: GrantFiled: August 27, 2014Date of Patent: December 9, 2014Assignee: JEOL Ltd.Inventors: Hidetaka Sawada, Takeo Sasaki
-
Patent number: 8847172Abstract: A method for axial alignment of a charged particle beam relative to at least three stages of multipole elements and a charged particle beam system capable of making the axial alignment. Some parts of the orbit of the beam or the distributions of three astigmatic fields, or both, are simultaneously translated in a direction perpendicular to the optical axis such that astigmatisms of the same order and same type due to axial deviations between successive ones of the astigmatic fields cancel.Type: GrantFiled: November 16, 2011Date of Patent: September 30, 2014Assignee: JEOL Ltd.Inventors: Hidetaka Sawada, Takeo Sasaki
-
Patent number: 8785880Abstract: The chromatic aberration corrector (100) has a first multipole element (110) for producing a first electromagnetic field and a second multipole element (120) for producing a second electromagnetic field. The first multipole element (110) first, second, and third portions (110a, 110b, 110c) arranged along an optical axis (OA) having a thickness and producing a quadrupole field in which an electric quadrupole field and a magnetic quadrupole field are superimposed. In the first and third portions (110a, 110c), the electric quadrupole field is set stronger than the magnetic quadrupole field. In the second portion (110b), the magnetic quadrupole field is set stronger than the electric quadrupole field. The second portion (110b) produces a two-fold astigmatism component that is opposite in sign to two-fold astigmatism components produced by the first portion (110a) and third portion (110c).Type: GrantFiled: December 11, 2013Date of Patent: July 22, 2014Assignee: JEOL Ltd.Inventors: Hidetaka Sawada, Fumio Hosokawa
-
Publication number: 20140158901Abstract: The chromatic aberration corrector (100) has a first multipole element (110) for producing a first electromagnetic field and a second multipole element (120) for producing a second electromagnetic field. The first multipole element (110) first, second, and third portions (110a, 110b, 110c) arranged along an optical axis (OA) having a thickness and producing a quadrupole field in which an electric quadrupole field and a magnetic quadrupole field are superimposed. In the first and third portions (110a, 110c), the electric quadrupole field is set stronger than the magnetic quadrupole field. In the second portion (110b), the magnetic quadrupole field is set stronger than the electric quadrupole field. The second portion (110b) produces a two-fold astigmatism component that is opposite in sign to two-fold astigmatism components produced by the first portion (110a) and third portion (110c).Type: ApplicationFiled: December 11, 2013Publication date: June 12, 2014Applicant: JEOL Ltd.Inventors: Hidetaka Sawada, Fumio Hosokawa