Patents by Inventor Hidetoshi Hashimoto

Hidetoshi Hashimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10934962
    Abstract: An abnormality diagnosis device of an in-cylinder pressure sensor is provided. The device carries out a performance determination in which a performance quality of the sensor is determined based on an electric signal inputted from the sensor. The device carries out a first determination in which the performance determination is performed at a given timing, a performance recovery in which a given deposit removal control is executed in which a deposit accumulating inside the combustion chamber is removed when the performance quality of the in-cylinder pressure sensor is determined to fall below a given reference value, and a second determination in which the performance determination is carried out again after the performance recovery. In the second determination, the in-cylinder pressure sensor is diagnosed as abnormal when the performance quality of the sensor is determined to fall below the given reference value.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: March 2, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Patent number: 10876488
    Abstract: A failure diagnosis device for an in-cylinder pressure sensor is provided, which includes an in-cylinder pressure sensor, and an engine controller comprised of circuitry configured to execute a diagnosis module into which a signal of the sensor is inputted, to diagnose a failure of the sensor based on the signal. The diagnosis module includes a reading module configured to read the signal of the sensor within a specific crank angle range, a reference phase determining module configured to determine a reference phase that is a phase of a pressure change accompanying a volume change of the combustion chamber, and a failure determining module configured to determine that the sensor has failed, when the failure determining module determines a phase of the read signal of the sensor is delayed by an amount exceeding a predefined threshold from the determined reference phase.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: December 29, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Patent number: 10859030
    Abstract: A control device for an engine is provided, which includes a knock intensity sensor configured to detect a knock intensity, an output adjustment mechanism configured to adjust an engine output torque, and a controller configured to control the output adjustment mechanism based on the knock intensity. The controller executes a first control in which the output adjustment mechanism is controlled to reduce the knock intensity when the number of strong knocks that is the number of times the knock intensity becomes a second determination intensity or greater is a given determination number or less and when the knock intensity is greater than a first determination intensity, and executes a second control in which the output adjustment mechanism is controlled to reduce the maximum torque more than when the number of strong knocks is the determination number or less, when the number of strong knocks is greater than the determination number.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: December 8, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Kouji Shishime, Takashi Kohata, Hidetoshi Hashimoto, Taiki Maiguma
  • Patent number: 10815917
    Abstract: A failure diagnosis system for an in-cylinder pressure sensor is provided, which includes an in-cylinder pressure sensor, a fuel injection valve, an engine controller including an engine control module and a diagnosis module. The engine control module controls the fuel injection valve to stop the supply of fuel to the engine, when a fuel cut condition is satisfied while the automobile travels. The diagnosis module includes a limiting module configured to limit an execution of the failure diagnosis of the in-cylinder pressure sensor until the diagnosis module determines that a given period has lapsed after the stop of fuel supply to the engine. The diagnosis module reads a signal of the in-cylinder pressure sensor when the given period has lapsed after the stop of the fuel supply to the engine, and diagnoses the failure of the in-cylinder pressure sensor based on the read signal of the in-cylinder pressure sensor.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: October 27, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Publication number: 20200325843
    Abstract: A control device for an engine is provided, which includes a knock intensity sensor configured to detect a knock intensity, an output adjustment mechanism configured to adjust an engine output torque, and a controller configured to control the output adjustment mechanism based on the knock intensity. The controller executes a first control in which the output adjustment mechanism is controlled to reduce the knock intensity when the number of strong knocks that is the number of times the knock intensity becomes a second determination intensity or greater is a given determination number or less and when the knock intensity is greater than a first determination intensity, and executes a second control in which the output adjustment mechanism is controlled to reduce the maximum torque more than when the number of strong knocks is the determination number or less, when the number of strong knocks is greater than the determination number.
    Type: Application
    Filed: January 29, 2020
    Publication date: October 15, 2020
    Inventors: Kouji Shishime, Takashi Kohata, Hidetoshi Hashimoto, Taiki Maiguma
  • Patent number: 10767592
    Abstract: A failure diagnosis device for an in-cylinder pressure sensor includes an in-cylinder pressure sensor, and a controller comprised of circuitry configured to execute a diagnosis module into which a signal of the in-cylinder pressure sensor is inputted and configured to diagnose a failure of the sensor based on the signal. The diagnosis module includes a reading module configured to read the signals of the in-cylinder pressure sensor at a first timing that is a timing retarded by a specific crank angle from a compression top dead center, and at a second timing that is a timing advanced by the specific crank angle from the compression top dead center, and a failure determining module configured to determine that the in-cylinder pressure sensor has failed when the failure determining module determines that a difference between signal values at the first timing and at the second timing exceeds a predefined threshold.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: September 8, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Publication number: 20200200112
    Abstract: An abnormality diagnosis device of an in-cylinder pressure sensor is provided. The device carries out a performance determination in which a performance quality of the sensor is determined based on an electric signal inputted from the sensor. The device carries out a first determination in which the performance determination is performed at a given timing, a performance recovery in which a given deposit removal control is executed in which a deposit accumulating inside the combustion chamber is removed when the performance quality of the in-cylinder pressure sensor is determined to fall below a given reference value, and a second determination in which the performance determination is carried out again after the performance recovery. In the second determination, the in-cylinder pressure sensor is diagnosed as abnormal when the performance quality of the sensor is determined to fall below the given reference value.
    Type: Application
    Filed: October 25, 2019
    Publication date: June 25, 2020
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Patent number: 10677199
    Abstract: An anomaly determination device for an evaporated fuel processing device comprises: an evaporated fuel processing device (60) including a canister (61), a purge passage (62) and a purge valve (66); a first pressure sensor (43) and/or a second pressure sensor (45) for acquiring a purge downstream pressure, a third pressure sensor (53) for acquiring a canister internal pressure, and a PCM (70) that calculates a purge flow rate per unit time based on the purge downstream pressure and an opening degree of the purge valve (66), and calculates an integrated purge flow rate by integrating the purge flow rate, so as to perform an anomaly determination for the evaporated fuel processing device (60) based on the canister internal pressure and the integrated purge flow rate. The PCM (70) uses the canister internal pressure when the integrated purge flow rate becomes a predetermined flow rate or more.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: June 9, 2020
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Hidetoshi Hashimoto, Daisuke Tanaka, Yusuke Higuchi, Takayuki Kikuchi
  • Publication number: 20200095957
    Abstract: An anomaly determination device for an evaporated fuel processing device comprises: an evaporated fuel processing device 60 including a canister 61, a purge passage 62 and a purge valve 66; a first pressure sensor 43 and/or a second pressure sensor 45 for acquiring a purge downstream pressure, a third pressure sensor 53 for acquiring a canister internal pressure, and a PCM 70 that calculates a purge flow rate per unit time based on the purge downstream pressure and an opening degree of the purge valve 66, and calculates an integrated purge flow rate by integrating the purge flow rate, so as to perform an anomaly determination for the evaporated fuel processing device 60 based on the canister internal pressure and the integrated purge flow rate. The PCM 70 uses the canister internal pressure when the integrated purge flow rate becomes a predetermined flow rate or more.
    Type: Application
    Filed: March 23, 2017
    Publication date: March 26, 2020
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Hidetoshi HASHIMOTO, Daisuke TANAKA, Yusuke HIGUCHI, Takayuki KIKUCHI
  • Publication number: 20200072148
    Abstract: A failure diagnosis system for an in-cylinder pressure sensor is provided, which includes an in-cylinder pressure sensor, a fuel injection valve, an engine controller including an engine control module and a diagnosis module. The engine control module controls the fuel injection valve to stop the supply of fuel to the engine, when a fuel cut condition is satisfied while the automobile travels. The diagnosis module includes a limiting module configured to limit an execution of the failure diagnosis of the in-cylinder pressure sensor until the diagnosis module determines that a given period has lapsed after the stop of fuel supply to the engine. The diagnosis module reads a signal of the in-cylinder pressure sensor when the given period has lapsed after the stop of the fuel supply to the engine, and diagnoses the failure of the in-cylinder pressure sensor based on the read signal of the in-cylinder pressure sensor.
    Type: Application
    Filed: July 2, 2019
    Publication date: March 5, 2020
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Publication number: 20200072150
    Abstract: A failure diagnosis device for an in-cylinder pressure sensor includes an in-cylinder pressure sensor, and a controller comprised of circuitry configured to execute a diagnosis module into which a signal of the in-cylinder pressure sensor is inputted and configured to diagnose a failure of the sensor based on the signal. The diagnosis module includes a reading module configured to read the signals of the in-cylinder pressure sensor at a first timing that is a timing retarded by a specific crank angle from a compression top dead center, and at a second timing that is a timing advanced by the specific crank angle from the compression top dead center, and a failure determining module configured to determine that the in-cylinder pressure sensor has failed when the failure determining module determines that a difference between signal values at the first timing and at the second timing exceeds a predefined threshold.
    Type: Application
    Filed: July 2, 2019
    Publication date: March 5, 2020
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Publication number: 20200072149
    Abstract: A failure diagnosis device for an in-cylinder pressure sensor is provided, which includes an in-cylinder pressure sensor, and an engine controller comprised of circuitry configured to execute a diagnosis module into which a signal of the sensor is inputted, to diagnose a failure of the sensor based on the signal. The diagnosis module includes a reading module configured to read the signal of the sensor within a specific crank angle range, a reference phase determining module configured to determine a reference phase that is a phase of a pressure change accompanying a volume change of the combustion chamber, and a failure determining module configured to determine that the sensor has failed, when the failure determining module determines a phase of the read signal of the sensor is delayed by an amount exceeding a predefined threshold from the determined reference phase.
    Type: Application
    Filed: July 2, 2019
    Publication date: March 5, 2020
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma