Patents by Inventor Hidetoshi Kumagai

Hidetoshi Kumagai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11813700
    Abstract: An aluminum alloy brazing sheet is formed of a four-layer material formed of a brazing material, an intermediate material, a core material, and a brazing material. The intermediate material comprises Mg of 0.40 to 6.00 mass %, and has a total of contents of Mn, Cr, and Zr being 0.10 mass % or more. The core material comprises Mg of 0.20 to 2.00 mass % and comprises one or two or more of Mn of 1.80 mass % or less, Si of 1.05 mass % or less, Fe of 1.00 mass % or less, Cu of 1.20 mass % or less, Ti of 0.30 mass % or less, Zr of 0.30 mass % or less, and Cr of 0.30 mass % or less. Each of the core material and the intermediate material has a grain size of 20 to 300 ?m.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: November 14, 2023
    Assignee: UACJ CORPORATION
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka, Taketoshi Toyama, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Takahiro Shinoda
  • Publication number: 20230250523
    Abstract: An aluminum alloy extruded multi-hole tube for a heat exchanger is formed of an aluminum alloy comprising Mn of 0.60 to 1.80 mass % and Si of more than 0.00 mass % and less than 0.20 mass %, with the balance being Al and inevitable impurities. The aluminum alloy has a ratio (Mn/Si) of the Mn content to the Si content being 15.0 or more. Strength change (tensile strength (A) of the aluminum alloy after heating test - tensile strength (B) of the aluminum alloy before heating test) in a heating test at 600° C.±10° C. for 3 minutes is -5 MPa or more. The present invention can provide an aluminum alloy extruded multi-hole tube for a heat exchanger having excellent extrudability and high strength after brazing, and a method for manufacturing the same.
    Type: Application
    Filed: June 2, 2021
    Publication date: August 10, 2023
    Applicant: UACJ Corporation
    Inventors: Taichi Suzuki, Ryo Tomori, Hidetoshi Kumagai
  • Publication number: 20230220521
    Abstract: An aluminum alloy extruded multi-hole tube for a heat exchanger is formed of an aluminum alloy comprising Mn of 0.60 to 1.80 mass % and Si of 0.20 to 0.70 mass %, with the balance being Al and inevitable impurities. The aluminum alloy has a ratio (Mn/Si) of the Mn content to the Si content being 2.6 to 4.0. Strength change (tensile strength (A) of the aluminum alloy after heating test?tensile strength (B) of the aluminum alloy before heating test) thereof in a heating test at 600° C.±10° C. for 3 minutes is ?5 MPa or more. The present invention can provide an aluminum alloy extruded multi-hole tube for a heat exchanger having excellent extrudability and high strength after brazing, and a method for manufacturing the same.
    Type: Application
    Filed: June 2, 2021
    Publication date: July 13, 2023
    Applicant: UACJ Corporation
    Inventors: Taichi Suzuki, Ryo Tomori, Hidetoshi Kumagai
  • Patent number: 11491587
    Abstract: An aluminum alloy brazing sheet used for brazing of an aluminum material in an inert gas atmosphere or in vacuum is formed of a two-layer material in which a brazing material and a core material are stacked. The core material is formed of an aluminum alloy and has a grain size of 20 to 300 ?m, and the aluminum alloy contains Mn of 0.50 to 2.00 mass %, Mg of 0.40 to 2.00 mass %. Si of 1.50 mass % or less, Fe of 1.00 mass % or less, and Ti of 0.10 to 0.30 mass %, with the balance being aluminum and inevitable impurities. The brazing material is formed of an aluminum alloy containing Si of 4.00 to 13.00 mass % with the balance being aluminum and inevitable impurities. In a drop-type fluidity test, a ratio ? (?=Ka/Kb) of a fluid coefficient Ka is 0.50 or more.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 8, 2022
    Assignee: UACJ CORPORATION
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka, Taketoshi Toyama, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada
  • Patent number: 11491586
    Abstract: An aluminum alloy brazing sheet used for brazing of an aluminum material in an inert gas atmosphere or in vacuum is formed of a two-layer material in which a brazing material and a core material are stacked in this order. The core material is formed of an aluminum alloy and has a grain size of 20 to 300 ?m, and the aluminum alloy contains Mn of 0.50 to 2.00 mass %, Mg of 0.40 to 2.00 mass %, Si of 1.50 mass % or less, and Fe of 1.00 mass % or less, with the balance being aluminum and inevitable impurities. The brazing material is formed of an aluminum alloy containing Si of 4.00 to 13.00 mass % with the balance being aluminum and inevitable impurities, and, in a drop-type fluidity test, a ratio ? (?=Ka/Kb) of a fluid coefficient Ka is 0.50 or more.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 8, 2022
    Assignee: UACJ CORPORATION
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka
  • Publication number: 20220281040
    Abstract: An aluminum alloy brazing sheet is formed of a four-layer material formed of a brazing material, an intermediate material, a core material, and a. brazing material. The intermediate material comprises Mg of 0.40 to 6.00 mass %, and has a total of contents of Mn, Cr, and Zr being 0.10 mass % or more. The core material comprises Mg of 0.20 to 2.00 mass % and comprises one or two or more of Mn of 1.80 mass % or less, Si of 1.05 mass % or less, Fe of 1.00 mass % or less, Cu of 1.20 mass % or less, Ti of 0.30 mass % or less, Zr of 0.30 mass % or less, and Cr of 0.30 mass % or less. Each of the core material and the intermediate material has a grain size of 20 to 300 ?m.
    Type: Application
    Filed: July 6, 2020
    Publication date: September 8, 2022
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka, Taketoshi Toyama, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Takahiro Shinoda
  • Publication number: 20220250195
    Abstract: An aluminum alloy brazing sheet used for brazing of an aluminum material in an inert gas atmosphere or in vacuum is formed of a two-layer material in which a brazing material and a core material are stacked in this order. The core material is formed of an aluminum alloy and has a grain size of 20 to 300 ?m, and the aluminum alloy includes Mn of 0.50 to 2.00 mass %, Mg of 0.40 to 2.00 mass %, Si of 1.50 mass % or less, and Fe of 1.00 mass % or less. The brazing material is formed of an aluminum alloy including Si of 4.00 to 13.00 mass % and one or two or more of Mn of 2.00 mass or less, Ti of 0.30 mass % or less, Zr of 0.30 mass % or less, and Cr of 0.30 mass % or less.
    Type: Application
    Filed: July 6, 2020
    Publication date: August 11, 2022
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka, Taketoshi Toyama, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Takahiro Shinoda
  • Publication number: 20210394313
    Abstract: An aluminum alloy brazing sheet formed of a brazing material, an intermediate material, a core material, and a brazing material. The intermediate material contains Mg of 0.40 to 6.00 mass % and Zn exceeding 2.00 mass % and equal to or less than 8.00 mass %. The core material contains Mg of 0.40 to 2.00 mass % and one or two or more of Mn of 1.80 mass % or less, Si of 1.50 mass % or less, Fe of 1.00 mass % or less, Cu of 1.20 mass % or less, Ti of 0.30 mass % or less, Zr of 0.30 mass % or less, and Cr of 0.30 mass % or less. Each of the core material and the intermediate material has a grain size of 20 to 300 ?m, and each of the brazing materials comprises Si of 4.00 to 13.00 mass %.
    Type: Application
    Filed: October 25, 2019
    Publication date: December 23, 2021
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka
  • Publication number: 20210394312
    Abstract: An aluminum alloy brazing sheet used for brazing of an aluminum material in an inert gas atmosphere or in vacuum is formed of a two-layer material in which a brazing material and a core material are stacked. The core material is formed of an aluminum alloy and has a grain size of 20 to 300 ?m, and the aluminum alloy contains Mn of 0.50 to 2.00 mass %, Mg of 0.40 to 2.00 mass %. Si of 1.50 mass % or less, Fe of 1.00 mass % or less, and Ti of 0.10 to 0.30 mass %, with the balance being aluminum and inevitable impurities. The brazing material is formed of an aluminum alloy containing Si of 4.00 to 13.00 mass % with the balance being aluminum and inevitable impurities. In a drop-type fluidity test, a ratio ? (?=Ka/Kb) of a fluid coefficient Ka is 0.50 or more.
    Type: Application
    Filed: October 25, 2019
    Publication date: December 23, 2021
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka, Taketoshi Toyama, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada
  • Publication number: 20210379705
    Abstract: An aluminum alloy brazing sheet is formed of a brazing material, an intermediate material, a core material, and a brazing material. The intermediate material contains Mg of 0.40 to 6.00 mass %, and has total of contents of Mn, Cr, and Zr being 0.10 mass % or more. The core material contains Mg of 0.20 to 2.00 mass % and one or two or more of Mn of 1.80 mass % or less, Si of 1.50 mass % or less, Fe of 1.00 mass % or less, Cu of 1.20 mass % or less, Ti of 0.30 mass % or less, Zr of 0.30 mass % or less, and Cr of 0.30 mass % or less. Each of the core material and the intermediate material has a grain size of 20 to 300 ?m, and each of the brazing materials contain Si of 4.00 to 13.00 mass %.
    Type: Application
    Filed: October 25, 2019
    Publication date: December 9, 2021
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka
  • Publication number: 20210354250
    Abstract: An aluminum alloy brazing sheet used for brazing of an aluminum material in an inert gas atmosphere or in vacuum is formed of a two-layer material in which a brazing material and a core material are stacked in this order. The core material is formed of an aluminum alloy and has a grain size of 20 to 300 ?m, and the aluminum alloy contains Mn of 0.50 to 2.00 mass %, Mg of 0.40 to 2.00 mass %, Si of 1.50 mass % or less, and Fe of 1.00 mass % or less, with the balance being aluminum and inevitable impurities. The brazing material is formed of an aluminum alloy containing Si of 4.00 to 13.00 mass % with the balance being aluminum and inevitable impurities, and, in a drop-type fluidity test, a ratio ? (?=Ka/Kb) of a fluid coefficient Ka is 0.50 or more.
    Type: Application
    Filed: October 25, 2019
    Publication date: November 18, 2021
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka
  • Publication number: 20210310039
    Abstract: The present invention provides a comprehensive assay capable of comprehensively measuring interactive factors for a variety of different types of proteins. In the present invention, provided is a system for detecting activation of a protein by integrating, with mediation of a plurality of factors, changes in the transcriptional regulatory region of a gene whose expression is changed by activation of the protein. The stimulation response ratio of transcription activity before and after stimulation by ligands possessed by individual transcriptional regulatory regions is synergistically integrated, so that a highly sensitive reporter assay system can be constructed.
    Type: Application
    Filed: July 26, 2019
    Publication date: October 7, 2021
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Yuichi IKEDA, Hidetoshi KUMAGAI
  • Publication number: 20210187673
    Abstract: An aluminum alloy brazing sheet, a manufacturing method therefor, and a manufacturing method for an automotive heat exchanger. The aluminum alloy brazing sheet includes an aluminum alloy core material, a first brazing material that is clad to one surface of the core material, and a second brazing material that is clad to the other surface of the core material. The core material, the first brazing material, and the second brazing material each include a respective prescribed aluminum alloy. A count of an Al—Si—Fe intermetallic compound having an equivalent circle diameter of 0.5 to 80.0 ?m in the second brazing material is less than or equal to 2,000 particles per mm2.
    Type: Application
    Filed: February 14, 2017
    Publication date: June 24, 2021
    Inventors: Toshiya Kondo, Makoto Ando, Tomohiro Shoji, Hidetoshi Kumagai
  • Patent number: 9844839
    Abstract: A flux composition includes a component (A) that is a powder of an alkali metal zinc fluoroaluminate represented by “MwZnxAlyFz (1)” (wherein M is K or Cs, and w, x, y, and z are a positive integer, the greatest common divisor of w, x, y, and z being 1), the content of the component (A) in the flux composition being 50 mass % or more. The flux composition prevents occurrence of a brazing defect and discoloration even when an aluminum alloy is brazed in an atmosphere having a high oxygen concentration, or an atmosphere having high humidity.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: December 19, 2017
    Assignee: UACJ Corporation
    Inventors: Hidetoshi Kumagai, Yuji Hisatomi, Naoki Yamashita
  • Publication number: 20170205159
    Abstract: A heat-exchanger tube has a tube main body composed of an aluminum alloy. A coating is applied onto a surface of the tube main body. The coating contains a powder mixture—which includes: 1 g/m2 or more and 7 g/m2 or less of an Si powder, 0.2 g/m2 or more and 4.0 g/m2 or less of a Zn powder, 0.5 g/m2 or more and 5.0 g/m2 or less of a first flux powder composed of a compound that contains Zn, and 5 g/m2 or more and 20 g/m2 or less of a second flux powder composed of a compound that does not contain Zn—and a binder. The total amount of the powder mixture in the coating is 30 g/m2 or less. The proportion of the binder in the coating is 5-40 mass %.
    Type: Application
    Filed: April 27, 2015
    Publication date: July 20, 2017
    Inventors: Naoki YAMASHITA, Hidetoshi KUMAGAI, Daigo KIGA
  • Publication number: 20150290748
    Abstract: A flux composition includes a component (A) that is a powder of an alkali metal zinc fluoroaluminate represented by “MwZnxAlyFz (1)” (wherein M is K or Cs, and w, x, y, and z are a positive integer, the greatest common divisor of w, x, y, and z being 1), the content of the component (A) in the flux composition being 50 mass % or more. The flux composition prevents occurrence of a brazing defect and discoloration even when an aluminum alloy is brazed in an atmosphere having a high oxygen concentration, or an atmosphere having high humidity.
    Type: Application
    Filed: October 24, 2013
    Publication date: October 15, 2015
    Applicant: UACJ Corporation
    Inventors: Hidetoshi Kumagai, Yuji Hisatomi, Naoki Yamashita
  • Publication number: 20150273635
    Abstract: A method for brazing an aluminum alloy includes applying a flux component to a surface of an aluminum alloy member, and brazing the aluminum alloy member to which the flux component has been applied, the flux component being a component (A) that is a powder of an alkali metal zinc fluoroaluminate represented by “MwZnxAlyFz (1)” (wherein M is K or Cs, and w, x, y, and z are a positive integer, the greatest common divisor of w, x, y, and z being 1), the component (A) being applied to the surface of the aluminum alloy member in an amount of 1 to 50 g/m2. A flux composition prevents occurrence of a brazing defect and discoloration even when an aluminum alloy is brazed in an atmosphere having a high oxygen concentration, or an atmosphere having high humidity.
    Type: Application
    Filed: October 24, 2013
    Publication date: October 1, 2015
    Applicant: UACJ Corporation
    Inventors: Hidetoshi Kumagai, Yuji Hisatomi, Naoki Yamashita
  • Patent number: 7632935
    Abstract: An originally developed efficient signal sequence trapping method was used to screen a cDNA library prepared from cultured mast cells derived from mouse bone marrow. As a result, genes encoding type I membrane proteins and comprising a single immunoglobulin domain in the extracellular domain and a motif for transmitting an inhibitory signal into cells were successfully isolated.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: December 15, 2009
    Assignees: Chungai Seiyaku Kabushiki Kaisha
    Inventors: Toshio Kitamura, Hidetoshi Kumagai
  • Publication number: 20090275082
    Abstract: An originally developed efficient signal sequence trapping method was used to screen a cDNA library prepared from cultured mast cells derived from mouse bone marrow. As a result, genes encoding type I membrane proteins and comprising a single immunoglobulin domain in the extracellular domain and a motif for transmitting an inhibitory signal into cells were successfully isolated.
    Type: Application
    Filed: July 13, 2009
    Publication date: November 5, 2009
    Inventors: Toshio Kitamura, Hidetoshi Kumagai
  • Publication number: 20060121484
    Abstract: An originally developed efficient signal sequence trapping method was used to screen a cDNA library prepared from cultured mast cells derived from mouse bone marrow. As a result, genes encoding type I membrane proteins and comprising a single immunoglobulin domain in the extracellular domain and a motif for transmitting an inhibitory signal into cells were successfully isolated.
    Type: Application
    Filed: October 30, 2003
    Publication date: June 8, 2006
    Inventors: Toshio Kitamura, Hidetoshi Kumagai