Patents by Inventor Hidetoshi Taguchi

Hidetoshi Taguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140053596
    Abstract: A refrigeration apparatus (air conditioner (1A)) includes: a vapor channel (2A) that directs a refrigerant vapor from an evaporator (25) to a condenser (23); a liquid channel (2B) that directs a refrigerant liquid from the condenser (23) to the evaporator (25); a first circulation path (4) that allows the refrigerant liquid retained in the evaporator (25) to circulate via a first heat exchanger (indoor heat exchanger (31)); and a second circulation path (5) that allows the refrigerant liquid retained in the condenser (23) to circulate via a second heat exchanger (outdoor heat exchanger (33)). A first switching means and a second switching means are provided on the first circulation path (4) and the second circulation path (5). The first switching means and the second switching means are, for example, four-way valves 61 and 62.
    Type: Application
    Filed: April 27, 2012
    Publication date: February 27, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Kou Komori, Tomoichiro Tamura, Bunki Kawano, Hidetoshi Taguchi
  • Publication number: 20140047862
    Abstract: An air conditioner (1A) as a refrigeration apparatus includes: a refrigerant circuit (2) including an evaporator (25), a first compressor (21), a vapor cooler (3), a second compressor (22), and a condenser (23) that are connected in this order; a heat release circuit (4) that allows a heat medium to circulate between the condenser (23) and a first heat exchanger (5) that releases heat to the atmosphere; and a heat absorption circuit (6) that allows a heat medium to circulate between the evaporator (25) and a second heat exchanger (7). The vapor cooler (3) is a heat exchanger that exchanges heat between a refrigerant vapor compressed by the first compressor (21) and the heat medium flowing in the heat release circuit (4) or the heat medium flowing in the heat absorption circuit (6).
    Type: Application
    Filed: April 27, 2012
    Publication date: February 20, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Tomoichiro Tamura, Kou Komori, Bunki Kawano, Hidetoshi Taguchi
  • Publication number: 20120137651
    Abstract: A gas turbine system (1A) includes a gas turbine unit (2) and a cooling fluid generator (5). The gas turbine unit (2) includes a first compressor (21) and a first expansion turbine (23) coupled to each other by a first shaft (22), a combustor (26), and a fuel tank (30). A fuel held in the fuel tank (30) circulates through a fuel circulation passage (31). A working fluid that has a pressure increased by the first compressor (1) is extracted from the gas turbine unit (2). The cooling fluid generator (5) includes a cooler (55) for cooling, with the fuel flowing through the fuel circulation passage (31), the working fluid that has been extracted from the gas turbine unit (2), and a second expansion turbine (53) for expanding the working fluid that has flowed out of the cooler (55).
    Type: Application
    Filed: June 1, 2011
    Publication date: June 7, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Hidetoshi Taguchi, Fumitoshi Nishiwaki, Kou Komori, Tomoichiro Tamura, Subaru Matsumoto
  • Patent number: 8074471
    Abstract: A refrigeration cycle apparatus 1 includes a refrigerant circuit in which a refrigerant circulates. The refrigerant circuit is formed by connecting in sequence a compressor 2 for compressing the refrigerant, a radiator 3 for allowing the refrigerant compressed by compressor 2 to radiate heat, a fluid pressure motor 4 as a power recovery means, and an evaporator 5 for allowing the refrigerant discharged by the fluid pressure motor 4 to evaporate. The fluid pressure motor 4 performs a process for drawing the refrigerant and a process for discharging the refrigerant. These processes are performed substantially continuously.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: December 13, 2011
    Assignee: Panasonic Corporation
    Inventors: Hiroshi Hasegawa, Masaru Matsui, Takeshi Ogata, Fumitoshi Nishiwaki, Hidetoshi Taguchi, Fuminori Sakima, Masanobu Wada
  • Publication number: 20110100025
    Abstract: A fluid machine 110 includes a power recovery mechanism 105 for recovering power from a working fluid, a sub-compressor 102 driven by the recovered power, a shaft 12 coupling the power recovery mechanism 105 and the sub-compressor 102 to each other so that the recovered power is transmitted from the power recovery mechanism 105 to the sub-compressor 102. The power recovery mechanism 105 is provided with a first suction port 26 and a second suction port 27 that open and close, as the first piston 21 rotates, so that the refrigerant flows into the high pressure-side working chamber 23a. The second the suction port 27 is provided at a position facing the first suction port 26 in the axis direction of the shaft 12.
    Type: Application
    Filed: May 20, 2009
    Publication date: May 5, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Masanobu Wada, Hiroshi Hasegawa, Masaru Matsui, Hidetoshi Taguchi, Fuminori Sakima
  • Publication number: 20110070115
    Abstract: An expander-integrated compressor (100) includes: a compression mechanism (2) for compressing a working fluid; an expansion mechanism (3) for expanding a working fluid; and a shaft (5) that couples the compression mechanism (2) and the expansion mechanism (3). The expansion mechanism (3) includes a variable vane mechanism (60). The variable vane mechanism (60) controls the movement of a first vane (48) so that the ratio of a period P2 to a period P1 (P2/P1) can be adjusted, where P1 denotes the period during which the first vane (48) is in contact with a first piston (46) in the course of one rotation of the shaft (5), and P2 denotes the period during which the first vane (48) is spaced from the first piston (46) in the course of one rotation of the shaft (5).
    Type: Application
    Filed: May 18, 2009
    Publication date: March 24, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Yasufumi Takahashi, Atsuo Okaichi, Takeshi Ogata, Hidetoshi Taguchi, Takumi Hikichi, Masaru Matsui
  • Publication number: 20100251757
    Abstract: A refrigeration cycle apparatus 1 includes a refrigerant circuit in which a refrigerant circulates. The refrigerant circuit is formed by connecting in sequence a compressor 2 for compressing the refrigerant, a radiator 3 for allowing the refrigerant compressed by compressor 2 to radiate heat, a fluid pressure motor 4 as a power recovery means, and an evaporator 5 for allowing the refrigerant discharged by the fluid pressure motor 4 to evaporate. The fluid pressure motor 4 performs a process for drawing the refrigerant and a process for discharging the refrigerant. These processes are performed substantially continuously.
    Type: Application
    Filed: October 17, 2007
    Publication date: October 7, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Hiroshi Hasegawa, Masaru Matsui, Takeshi Ogata, Fumitoshi Nishiwaki, Hidetoshi Taguchi, Fuminori Sakima, Masanobu Wada
  • Publication number: 20100043481
    Abstract: An expander-compressor unit (10) includes a two-stage rotary expansion mechanism (3) having a first cylinder (41) and a second cylinder (42). In the expansion mechanism (3), a suction port (71) facing a working chamber on the upstream side in the first cylinder (41) and a discharge port facing a working chamber on the downstream side in the second cylinder (42) are formed. An intermediate plate (43) is provided between the first cylinder (41) and the second cylinder (42). In the intermediate plate (43), a communication passage (43a) for allowing communication between a working chamber on the downstream side in the first cylinder (41) and a working chamber on the upstream side in the second cylinder (42) is formed. The communication passage (43a) does not communicate with the working chamber in the first cylinder (41) during the suction process, and communicates with the downstream working chamber in the first cylinder (41) at or after the end of the suction process.
    Type: Application
    Filed: February 22, 2008
    Publication date: February 25, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Takeshi Ogata, Hidetoshi Taguchi, Hiroshi Hasegawa, Yasufumi Takahashi, Atsuo Okaichi