Patents by Inventor Hideya KADONO

Hideya KADONO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230275241
    Abstract: A fuel cell assembly includes an electrode member that has a membrane electrode assembly having an electrolyte membrane and an electrode catalyst layer, and gas diffusion layers; a solid rubber gasket that is disposed in a frame shape on an outward side of the electrode member in a surface direction; and a bonding member that is disposed in a frame shape on the outward side of the electrode member in the surface direction, is bonded to the electrode member and the gasket, and integrates these. A form of bonding the bonding member to the electrode member is at least one of impregnation with the gas diffusion layers and bonding to the membrane electrode assembly. A thickness of the bonding member is equal to or larger than a thickness of the gas diffusion layer, and at least a portion on a surface of the bonding member is coated with the gasket.
    Type: Application
    Filed: May 8, 2023
    Publication date: August 31, 2023
    Applicant: Sumitomo Riko Company Limited
    Inventors: Hideya KADONO, Hideki OSHIMA, Hiroki ITAKURA
  • Publication number: 20220410454
    Abstract: Provided is a method for manufacturing a gasket member as described below. A plate-like base material is clamped between a first and a second split mold, and a gasket is fixed to a surface of the base material by injecting and filling a rubber-like elastic material into a cavity defined between the base material and the first split mold. An air vent is provided including an exhaust groove and an exhaust hole, the exhaust groove extending from the cavity toward an inner or outer peripheral side on a butting surface between the base material and the first split mold and partially opening in a circumferential direction of the cavity, the exhaust hole extending from the exhaust groove in a clamping direction of the first and second split molds. Air in the cavity is discharged through the air vent when the rubber-like elastic material is injected and filled into the cavity.
    Type: Application
    Filed: September 6, 2022
    Publication date: December 29, 2022
    Applicant: Sumitomo Riko Company Limited
    Inventors: Hideya Kadono, Shinichi Haga
  • Patent number: 11489170
    Abstract: A fuel cell separator includes a separator main body having a first surface and a second surface, and a first seal member disposed on the first surface. When a region on the first surface of the separator main body corresponding to an electrode member disposed on the second surface is defined as a power generation region, and a region on the first surface of the separator main body corresponding to an in-cell seal member is defined as a seal region, a displacement/vibration reducing member made of polymer is disposed at a part of the seal region. The displacement/vibration reducing member includes multiple protrusions and a coupling portion. When viewed in plan view, an axis line connecting the centers of the figures of the adjacent protrusions does not coincide with a center line passing through the widthwise center of the coupling portion. The coupling portion has a gate cut mark.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: November 1, 2022
    Assignees: Sumitomo Riko Company Limited, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideya Kadono, Shigeo Nakanishi, Shinobu Yamaguchi, Hitoshi Tamura, Shinichi Haga, Motohiro Mizuno, Kenji Sato, Takuya Kurihara, Tomohiro Mazaki
  • Publication number: 20210194018
    Abstract: A fuel cell separator includes a separator main body having a first surface and a second surface, and a first seal member disposed on the first surface. When a region on the first surface of the separator main body corresponding to an electrode member disposed on the second surface is defined as a power generation region, and a region on the first surface of the separator main body corresponding to an in-cell seal member is defined as a seal region, a displacement/vibration reducing member made of polymer is disposed at a part of the seal region. The displacement/vibration reducing member includes multiple protrusions and a coupling portion. When viewed in plan view, an axis line connecting the centers of the figures of the adjacent protrusions does not coincide with a center line passing through the widthwise center of the coupling portion. The coupling portion has a gate cut mark.
    Type: Application
    Filed: December 1, 2020
    Publication date: June 24, 2021
    Applicants: Sumitomo Riko Company Limited, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideya KADONO, Shigeo NAKANISHI, Shinobu YAMAGUCHI, Hitoshi TAMURA, Shinichi HAGA, Motohiro MIZUNO, Kenji SATO, Takuya KURIHARA, Tomohiro MAZAKI
  • Patent number: 11005121
    Abstract: A sealing part has an outer peripheral point of the sealing part within a range from 0 degree to 90 degrees around a center point of the sealing part relative to a stacking direction, and that is located at a distance of a first length L1 from the center point. Each point on the outer peripheral line within a first range satisfies L2?L1, where L2 is a second length that is a distance from the center point to that point. Each point on the outer peripheral line within a second range satisfies L3<L1, where L3 is a distance from the center point to that point, and is located on the opposite side of the outer peripheral point from the center point or at the same position as the outer peripheral point in the direction perpendicular to the stacking direction.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: May 11, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenji Sato, Hideya Kadono
  • Publication number: 20210074892
    Abstract: A method of manufacturing a separator for a fuel cell has a separator body arrangement process for arranging, through the use of a molding die equipped with a first die having a sealing member recess portion and a second die having a rib projection portion, a separator body in the second die before formation of a reinforcing rib, a die clamping for clamping the first die and the second die with the first die superimposed on the second die, and a sealing member molding for crosslinking an elastomer material into a sealing member and integrating the sealing member with a first surface of the separator body by injecting the elastomer material into the sealing member recess portion and heating the molding die. The reinforcing rib is formed on the separator body along the shape of the rib projection portion, between the die clamping and the sealing member molding.
    Type: Application
    Filed: November 20, 2020
    Publication date: March 11, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideya KADONO, Shinya SUBE, Hajime KAWARASAK, Keisuke MIYANAGA, Kiyoyuki TANIGUCHI, Naohito OHNO
  • Patent number: 10826097
    Abstract: A fuel cell includes a power generating body including a membrane electrode assembly, a resin frame placed around the power generating body, and a pair of separators laminated on the resin frame so as to sandwich the power generating body and the resin frame. The resin frame has a resin-frame-side manifold in which reaction gas flows in a direction passing through the resin frame, an opening that holds the power generating body, and a gas introduction channel formed through the resin frame between the resin-frame-side manifold and the opening. Each separator has a separator-side manifold through which the reaction gas flows, and which is provided at a position corresponding to the resin-frame-side manifold in a lamination direction, and the gas introduction channel has a gas introduction part that extends into the separator-side manifold, when viewed in the lamination direction.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: November 3, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Sato, Sachio Okada, Hideya Kadono
  • Patent number: 10770737
    Abstract: A gasket comprising: a first sealing part surrounding the sealed area; and a second sealing part surrounding the sealed area and being provided external to an area surrounded by the first sealing part. When a compressive deformation ratio is defined as a ratio of a deformation amount in a height direction to pressure applied to the gasket in the height direction, in the first sealing part, the compressive deformation ratio at a section to be arranged on a first fuel cell side is greater than the compressive deformation ratio at a section to be arranged on a second fuel cell side, and in the second sealing part, the compressive deformation ratio at a section to be arranged on the second fuel cell side is greater than the compressive deformation ratio at a section to be arranged on the first fuel cell side.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: September 8, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobuaki Nonoyama, Kenji Sato, Hideya Kadono
  • Patent number: 10381662
    Abstract: A separator for a fuel cell, to be disposed opposing to a membrane electrode assembly, is provided. The separator includes a separator central area portion opposing to a center area of the membrane electrode assembly that concerns generating power, an outer edge portion located in an outer edge of the separator central area portion, a rubber molded body made of rubber, the rubber molded body being formed in the outer edge portion by die-casting a die-casting rubber material using die, and an adhesive layer formed in the outer edge portion, for adhering the rubber molded body to the outer edge portion. The adhesive layer is formed over an adhesive layer area that includes and is larger than an area where the rubber molded body is die-casted in the outer edge portion. Thus, a disadvantage due to burrs which are generated when die-casting the rubber molded body can be reduced.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: August 13, 2019
    Assignees: Toyota Jidosha Kabushiki Kaisha, Sumitomo Riko Company Limited
    Inventors: Hideya Kadono, Kenji Sato, Takuya Kurihara, Fumishige Shizuku, Hiroki Itakura, Takahiro Aoki
  • Publication number: 20180301727
    Abstract: A fuel cell includes a power generating body including a membrane electrode assembly, a resin frame placed around the power generating body, and a pair of separators laminated on the resin frame so as to sandwich the power generating body and the resin frame. The resin frame has a resin-frame-side manifold in which reaction gas flows in a direction passing through the resin frame, an opening that holds the power generating body, and a gas introduction channel formed through the resin frame between the resin-frame-side manifold and the opening. Each separator has a separator-side manifold through which the reaction gas flows, and which is provided at a position corresponding to the resin-frame-side manifold in a lamination direction, and the gas introduction channel has a gas introduction part that extends into the separator-side manifold, when viewed in the lamination direction.
    Type: Application
    Filed: April 11, 2018
    Publication date: October 18, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenji Sato, Sachio Okada, Hideya Kadono
  • Publication number: 20180301717
    Abstract: A gasket comprising: a first sealing part surrounding the sealed area; and a second sealing part surrounding the sealed area and being provided external to an area surrounded by the first sealing part. When a compressive deformation ratio is defined as a ratio of a deformation amount in a height direction to pressure applied to the gasket in the height direction, in the first sealing part, the compressive deformation ratio at a section to be arranged on a first fuel cell side is greater than the compressive deformation ratio at a section to be arranged on a second fuel cell side, and in the second sealing part, the compressive deformation ratio at a section to be arranged on the second fuel cell side is greater than the compressive deformation ratio at a section to be arranged on the first fuel cell side.
    Type: Application
    Filed: April 9, 2018
    Publication date: October 18, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nobuaki Nonoyama, Kenji Sato, Hideya Kadono
  • Publication number: 20180115007
    Abstract: A sealing part has an outer peripheral point of the sealing part within a range from 0 degree to 90 degrees around a center point of the sealing part relative to a stacking direction, and that is located at a distance of a first length L1 from the center point. Each point on the outer peripheral line within a first range satisfies L2?L1, where L2 is a second length that is a distance from the center point to that point. Each point on the outer peripheral line within a second range satisfies L3<L1, where L3 is a distance from the center point to that point, and is located on the opposite side of the outer peripheral point from the center point or at the same position as the outer peripheral point in the direction perpendicular to the stacking direction.
    Type: Application
    Filed: October 2, 2017
    Publication date: April 26, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenji SATO, Hideya KADONO
  • Patent number: 9470314
    Abstract: A rubber gasket for a fuel cell is interposed between a first member and a second member stacked in the fuel cell. The fuel cell includes: a seat portion arranged on a surface of the first member; and a lip portion that includes a first hill portion projecting from the seat portion toward the second member and having a curved surface with a first curvature radius and a second hill portion projecting from the first hill portion toward the second member and having a curved surface with a second curvature radius smaller than the first curvature radius, and that makes elastic contact with the second member. The seat portion includes a planar inclined surface inclined with respect to the surface direction at a connecting portion leading to a bottom of the first hill portion.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: October 18, 2016
    Assignees: SUMITOMO RIKO COMPANY LIMITED, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideya Kadono, Hiroki Itakura, Kenji Sato, Takuya Kurihara, Hideaki Tanahashi
  • Patent number: 9437883
    Abstract: A manufacturing method of a fuel cell module includes: forming an outer divided body having a frame shape and formed from an uncrosslinked item of solid rubber having adhesiveness in a seal member arrangement portion of a separator to produce an outer temporary assembly, and forming an inner divided body having a frame shape and formed from an uncrosslinked item of solid rubber in a peripheral edge portion of an electrode member to produce an inner temporary assembly; fitting the inner temporary assembly into a frame of the outer temporary assembly to produce a cell assembly temporary assembly; arranging a cell assembly stack, in which a plurality of the cell assembly temporary assemblies are stacked, in a forming die; and pressurizing and heating the forming die to crosslink the uncrosslinked item
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: September 6, 2016
    Assignees: SUMITOMO RIKO COMPANY LIMITED, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideaki Tanahashi, Shinichi Haga, Hideya Kadono, Yutaka Ishioka, Kenji Sato, Fumishige Shizuku, Hiroo Yoshikawa
  • Publication number: 20160141636
    Abstract: A separator for a fuel cell, to be disposed opposing to a membrane electrode assembly, is provided. The separator includes a separator central area portion opposing to a center area of the membrane electrode assembly that concerns generating power, an outer edge portion located in an outer edge of the separator central area portion, a rubber molded body made of rubber, the rubber molded body being formed in the outer edge portion by die-casting a die-casting rubber material using die, and an adhesive layer formed in the outer edge portion, for adhering the rubber molded body to the outer edge portion. The adhesive layer is formed over an adhesive layer area that includes and is larger than an area where the rubber molded body is die-casted in the outer edge portion. Thus, a disadvantage due to burrs which are generated when die-casting the rubber molded body can be reduced.
    Type: Application
    Filed: November 6, 2015
    Publication date: May 19, 2016
    Applicants: TOYOTA JODOSHA KABUSHIKI KAISHA, Sumitomo Riko Company Limited
    Inventors: Hideya KADONO, Kenji SATO, Takuya KURIHARA, Fumishige SHIZUKU, Hiroki ITAKURA, Takahiro AOKI
  • Publication number: 20160049670
    Abstract: A manufacturing method of a fuel cell module includes: forming an outer divided body having a frame shape and formed from an uncrosslinked item of solid rubber having adhesiveness in a seal member arrangement portion of a separator to produce an outer temporary assembly, and forming an inner divided body having a frame shape and formed from an uncrosslinked item of solid rubber in a peripheral edge portion of an electrode member to produce an inner temporary assembly; fitting the inner temporary assembly into a frame of the outer temporary assembly to produce a cell assembly temporary assembly; arranging a cell assembly stack, in which a plurality of the cell assembly temporary assemblies are stacked, in a forming die; and pressurizing and heating the forming die to crosslink the uncrosslinked item
    Type: Application
    Filed: September 15, 2015
    Publication date: February 18, 2016
    Applicants: Sumitomo Riko Company Limited, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideaki TANAHASHI, Shinichi HAGA, Hideya KADONO, Yutaka ISHIOKA, Kenji SATO, Fumishige SHIZUKU, Hiroo YOSHIKAWA
  • Publication number: 20150380694
    Abstract: A rubber gasket for a fuel cell is interposed between a first member and a second member stacked in the fuel cell. The fuel cell includes: a seat portion arranged on a surface of the first member; and a lip portion that includes a first hill portion projecting from the seat portion toward the second member and having a curved surface with a first curvature radius and a second hill portion projecting from the first hill portion toward the second member and having a curved surface with a second curvature radius smaller than the first curvature radius, and that makes elastic contact with the second member. The seat portion includes a planar inclined surface inclined with respect to the surface direction at a connecting portion leading to a bottom of the first hill portion.
    Type: Application
    Filed: April 6, 2015
    Publication date: December 31, 2015
    Applicants: SUMITOMO RIKO COMPANY LIMITED, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideya KADONO, Hiroki ITAKURA, Kenji SATO, Takuya KURIHARA, Hideaki TANAHASHI
  • Patent number: 9178242
    Abstract: A manufacturing method of a fuel cell module includes: forming an outer divided body having a frame shape and formed from an uncrosslinked item of solid rubber having adhesiveness in a seal member arrangement portion of a separator to produce an outer temporary assembly, and forming an inner divided body having a frame shape and formed from an uncrosslinked item of solid rubber in a peripheral edge portion of an electrode member to produce an inner temporary assembly fitting the inner temporary assembly into a frame of the outer temporary assembly to produce a cell assembly temporary assembly; arranging a cell assembly stack, in which a plurality of the cell assembly temporary assemblies are stacked, in a forming die; and pressurizing and heating the forming die to crosslink the uncrosslinked item.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: November 3, 2015
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO RIKO COMPANY LIMITED
    Inventors: Hideaki Tanahashi, Shinichi Haga, Hideya Kadono, Yutaka Ishioka, Kenji Sato, Fumishige Shizuku, Hiroo Yoshikawa
  • Patent number: 9017901
    Abstract: A manufacturing method of a cell assembly for a fuel cell includes: producing an electrode member, a separator, and a seal member preform, which has a frame shape and which is formed from an uncrosslinked item of solid rubber having adhesiveness, in a predetermined shape in advance; arranging the electrode member, the separator, and the seal member preform in a forming die including a pressing member, and closing the forming die while the pressing member is pressing a side of the electrode member that is opposite to the separator in the thickness direction; and pressurizing and heating the forming die to crosslink the uncrosslinked item so that the seal member seals the peripheral edge portion of the electrode member and integrates the electrode member and the separator with each other.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: April 28, 2015
    Assignee: Sumitomo Riko Company Limited
    Inventors: Hideaki Tanahashi, Shinichi Haga, Hideya Kadono, Yutaka Ishioka, Fumishige Shizuku, Kenji Sato, Hiroo Yoshikawa
  • Patent number: 8679702
    Abstract: A fuel cell module includes: an electrode member having a membrane electrode assembly, which is formed from an electrolyte membrane and a pair of electrode catalyst layers that is disposed on both sides of the electrolyte membrane in the thickness direction, and having a pair of porous layers disposed on both sides of the membrane electrode assembly in the thickness direction; a separator disposed layered on the electrode member so as to contact at least one of the porous layers; and an adhesive rubber member sealing a peripheral edge portion of the electrode member, wherein the electrode member and the separator are integrated by the adhesive rubber member, and a tensile product of the adhesive rubber member is 1,500 MPa·% or more.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: March 25, 2014
    Assignees: Tokai Rubber Industries, Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideaki Tanahashi, Yutaka Ishioka, Shinichi Haga, Hideya Kadono, Kenji Sato, Fumishige Shizuku