Patents by Inventor Hideyuki Andoh

Hideyuki Andoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7511316
    Abstract: A semiconductor device is provided which comprises a periphery region 23a extending downward from a third semiconducting region 23, enveloping an outer surfaces 21a and 22b of first and second semiconducting regions 21 and 22. A PN junctions is formed between second and third semiconducting regions 22, 23 inside of periphery region 23a perfectly away from side surfaces 28 of semiconductor substrate 27 to exert no adverse effect on breakdown by crystal defect in and foreign matters attached to side surfaces of semiconductor substrate 27. As periphery region 23a has the thinner diffusion concentration of impurity with the deeper area of periphery region 23a to widely spread depletion layer on boundary of the periphery region 23a with increase electric resistance.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: March 31, 2009
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Hideyuki Andoh
  • Patent number: 7199402
    Abstract: The present invention provides a semiconductor device embracing (a) a first semiconductor region defined by a first end surface, a second end surface opposing to the first end surface and a side boundary surface connecting the first and second end surfaces; (b) a second semiconductor region connected with the first semiconductor region at the second end surface; (c) a third semiconductor region connected with the first semiconductor region at the first end surface; and (d) a fourth semiconductor region having inner surface in contact with the side boundary surface and an impurity concentration lower than the first semiconductor region. The fourth semiconductor region surrounds the first semiconductor region, and is disposed between the second and third semiconductor regions. The first, second and fourth semiconductor regions are first conductivity-type, but the third semiconductor region is a second conductivity type.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: April 3, 2007
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Hideyuki Andoh
  • Publication number: 20050218425
    Abstract: A semiconductor device is provided which comprises a periphery region 23a extending downward from a third semiconducting region 23, enveloping an outer surfaces 21a and 22b of first and second semiconducting regions 21 and 22. A PN junctions is formed between second and third semiconducting regions 22, 23 inside of periphery region 23a perfectly away from side surfaces 28 of semiconductor substrate 27 to exert no adverse effect on breakdown by crystal defect in and foreign matters attached to side surfaces of semiconductor substrate 27. As periphery region 23a has the thinner diffusion concentration of impurity with the deeper area of periphery region 23a to widely spread depletion layer on boundary of the periphery region 23a with increase electric resistance.
    Type: Application
    Filed: March 29, 2005
    Publication date: October 6, 2005
    Inventor: Hideyuki Andoh
  • Patent number: 6639301
    Abstract: A semiconductor device embraces an n-type first semiconductor region, defined by first and second end surfaces and a first outer surface connecting the first and second end surfaces; a p-type second semiconductor region, defined by third and fourth end surfaces and a second outer surface connecting the third and fourth end surfaces, the fourth end surface is in contact with the first end surface; an n-type third semiconductor region connected with the first semiconductor region at the second end surface; a p-type fourth semiconductor region connected with the second semiconductor region at the third end surface; and a fifth semiconductor region having inner surface in contact with the first and second outer surfaces and an impurity concentration lower than the first semiconductor region. The fifth semiconductor region surrounds the first and second semiconductor regions and is disposed between the third and fourth semiconductor regions.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: October 28, 2003
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Hideyuki Andoh
  • Patent number: 6579772
    Abstract: A semiconductor device is provided, which prevents the development of localized breakdowns at the semiconductor sidewall, having a stabilized, desired breakdown voltage. It embraces a p-type third semiconductor region formed on a first main surface of an n-type semiconductor body; an n-type second semiconductor region selectively formed at the center of a second main surface; an n-type first semiconductor region formed between the third and the second semiconductor regions; and, n-type fourth semiconductor region surrounding the first and the second semiconductor regions. The impurity concentration of the first semiconductor region is set higher than that of the fourth semiconductor region.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: June 17, 2003
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Hideyuki Andoh
  • Publication number: 20020127890
    Abstract: The present invention provides a semiconductor device embracing (a) a first semiconductor region defined by a first end surface, a second end surface opposing to the first end surface and a side boundary surface connecting the first and second end surfaces; (b) a second semiconductor region connected with the first semiconductor region at the second end surface; (c) a third semiconductor region connected with the first semiconductor region at the first end surface; and (d) a fourth semiconductor region having inner surface in contact with the side boundary surface and an impurity concentration lower than the first semiconductor region. The fourth semiconductor region surrounds the first semiconductor region, and is disposed between the second and third semiconductor regions. The first, second and fourth semiconductor regions are first conductivity-type, but the third semiconductor region is a second conductivity type.
    Type: Application
    Filed: December 7, 2001
    Publication date: September 12, 2002
    Inventor: Hideyuki Andoh
  • Publication number: 20020070380
    Abstract: A semiconductor device embraces an n-type first semiconductor region, defined by first and second end surfaces and a first outer surface connecting the first and second end surfaces; a p-type second semiconductor region, defined by third and fourth end surfaces and a second outer surface connecting the third and fourth end surfaces, the fourth end surface is in contact with the first end surface; an n-type third semiconductor region connected with the first semiconductor region at the second end surface; a p-type fourth semiconductor region connected with the second semiconductor region at the third end surface; and a fifth semiconductor region having inner surface in contact with the first and second outer surfaces and an impurity concentration lower than the first semiconductor region. The fifth semiconductor region surrounds the first and second semiconductor regions and is disposed between the third and fourth semiconductor regions.
    Type: Application
    Filed: December 11, 2001
    Publication date: June 13, 2002
    Inventor: Hideyuki Andoh
  • Publication number: 20020072207
    Abstract: A semiconductor device is provided, which prevents the development of localized breakdowns at the semiconductor sidewall, having a stabilized, desired breakdown voltage. It embraces a p-type third semiconductor region formed on a first main surface of an n-type semiconductor body; an n-type second semiconductor region selectively formed at the center of a second main surface; an n-type first semiconductor region formed between the third and the second semiconductor regions; and, n-type fourth semiconductor region surrounding the first and the second semiconductor regions. The impurity concentration of the first semiconductor region is set higher than that of the fourth semiconductor region.
    Type: Application
    Filed: December 7, 2001
    Publication date: June 13, 2002
    Inventor: Hideyuki Andoh