Patents by Inventor Hideyuki Ijiri

Hideyuki Ijiri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10333270
    Abstract: An optical module 1 according to an embodiment includes a plurality of laser diodes (LDs) 21 to 23, a multiplexing optical system 30 combining a plurality of laser beams from the respective plurality of LDs, and a package 10 accommodating the plurality of LDs and the multiplexing optical system. The package includes a support mounted with the multiplexing optical system, and a cap having a transmissive window that allows a resultant light beam to pass through. At least one of the LDs has an oscillation wavelength of nor more than 550 nm. The package has an internal moisture content of not more than 3000 ppm. The multiplexing optical system is fixed to the support by a resin curing adhesive.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: June 25, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kyono, Hideyuki Ijiri, Takao Nakamura, Hiromi Nakanishi, Takatoshi Ikegami, Kuniaki Ishihara, Yohei Enya, Tetsuya Kumano
  • Patent number: 10199795
    Abstract: An optical module 1 according to an embodiment includes a plurality of laser diodes (LDs) 21 to 23, a multiplexing optical system 30 combining a plurality of laser beams from the respective plurality of LDs, and a package 10 accommodating the plurality of LDs and the multiplexing optical system. The package includes a support mounted with the multiplexing optical system, and a cap having a transmissive window that allows a resultant light beam to pass through. At least one of the LDs has an oscillation wavelength of nor more than 550 nm. The package has an internal moisture content of not more than 3000 ppm. The multiplexing optical system is fixed to the support by a resin curing adhesive.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: February 5, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kyono, Hideyuki Ijiri, Takao Nakamura, Hiromi Nakanishi, Takatoshi Ikegami, Kuniaki Ishihara, Yohei Enya, Tetsuya Kumano
  • Patent number: 10024516
    Abstract: An optical module includes a transmitting member. The transmitting member is fixed to a cap member so as to cover a through-hole. On the assumption that the height of one point on a first surface in a state in which the transmitting member is detached from the cap member is zero and the direction toward the outside of the optical module is a positive direction, the amount of warp that is a difference between the displacement at the central point and the displacement at a standard point, on the first surface, corresponding to a reference point, on the projection image, away from a center of gravity by a particular distance is different between a first geodesic line and a second geodesic line, the displacement being a height of the one point in a direction of the optical axis in a state in which the transmitting member is fixed to the cap member. The transmitting member is joined to the cap member at the first surface or the second surface.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: July 17, 2018
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kyono, Hiromi Nakanishi, Hideyuki Ijiri, Kaoru Shibata
  • Publication number: 20180019568
    Abstract: An optical module 1 according to an embodiment includes a plurality of laser diodes (LDs) 21 to 23, a multiplexing optical system 30 combining a plurality of laser beams from the respective plurality of LDs, and a package 10 accommodating the plurality of LDs and the multiplexing optical system. The package includes a support mounted with the multiplexing optical system, and a cap having a transmissive window that allows a resultant light beam to pass through. At least one of the LDs has an oscillation wavelength of nor more than 550 nm. The package has an internal moisture content of not more than 3000 ppm. The multiplexing optical system is fixed to the support by a resin curing adhesive.
    Type: Application
    Filed: September 26, 2017
    Publication date: January 18, 2018
    Inventors: Takashi Kyono, Hideyuki Ijiri, Takao Nakamura, Hiromi Nakanishi, Takatoshi Ikegami, Kuniaki Ishihara, Yohei Enya, Tetsuya Kumano
  • Publication number: 20180010763
    Abstract: An optical module includes a transmitting member. The transmitting member is fixed to a cap member so as to cover a through-hole. On the assumption that the height of one point on a first surface in a state in which the transmitting member is detached from the cap member is zero and the direction toward the outside of the optical module is a positive direction, the amount of warp that is a difference between the displacement at the central point and the displacement at a standard point, on the first surface, corresponding to a reference point, on the projection image, away from a center of gravity by a particular distance is different between a first geodesic line and a second geodesic line, the displacement being a height of the one point in a direction of the optical axis in a state in which the transmitting member is fixed to the cap member. The transmitting member is joined to the cap member at the first surface or the second surface.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 11, 2018
    Inventors: Takashi Kyono, Hiromi Nakanishi, Hideyuki Ijiri, Kaoru Shibata
  • Patent number: 9806494
    Abstract: An optical module 1 according to an embodiment includes a plurality of laser diodes (LDs) 21 to 23, a multiplexing optical system 30 combining a plurality of laser beams from the respective plurality of LDs, and a package 10 accommodating the plurality of LDs and the multiplexing optical system. The package includes a support mounted with the plurality of LDs and the multiplexing optical system, and a cap having a transmissive window that allows a resultant light beam to pass through. At least one of the LDs has an oscillation wavelength of nor more than 550 nm. The package has an internal moisture content of not more than 3000 ppm. The multiplexing optical system is fixed to the support by a resin curing adhesive.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: October 31, 2017
    Inventors: Takashi Kyono, Hideyuki Ijiri, Takao Nakamura, Hiromi Nakanishi, Takatoshi Ikegami, Kuniaki Ishihara, Yohei Enya, Tetsuya Kumano
  • Publication number: 20170141531
    Abstract: An optical module 1 according to an embodiment includes a plurality of laser diodes (LDs) 21 to 23, a multiplexing optical system 30 combining a plurality of laser beams from the respective plurality of LDs, and a package 10 accommodating the plurality of LDs and the multiplexing optical system. The package includes a support mounted with the plurality of LDs and the multiplexing optical system, and a cap having a transmissive window that allows a resultant light beam to pass through. At least one of the LDs has an oscillation wavelength of nor more than 550 nm. The package has an internal moisture content of not more than 3000 ppm. The multiplexing optical system is fixed to the support by a resin curing adhesive.
    Type: Application
    Filed: November 17, 2016
    Publication date: May 18, 2017
    Inventors: Takashi Kyono, Hideyuki Ijiri, Takao Nakamura, Hiromi Nakanishi, Takatoshi Ikegami, Kuniaki Ishihara, Yohei Enya, Tetsuya Kumano
  • Patent number: 8772787
    Abstract: A GaN substrate is stored within an atmosphere in which the oxygen concentration is not greater than 15 vol. % and the water-vapor concentration is not greater than 20 g/m3. The GaN substrate (1) has a planar first principal face (1m), and in an arbitrary point (P) along the first principal face (1m) and separated 3 mm or more from the outer edge thereof, the GaN substrate's plane orientation has an off-inclination angle ?? of ?10° or more, 10° or less with respect to the plane orientation of an arbitrarily designated crystalline plane (1a) that is inclined 50° or more, 90° or less with respect to a plane (1c), being either the (0001) plane or the (000 1) plane, through the arbitrary point. This enables storing GaN substrates whose principal-face plane orientation is other than (0001) or (000 1), making available GaN substrates with which semiconductor devices of favorable properties can be manufactured.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: July 8, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideyuki Ijiri, Seiji Nakahata
  • Publication number: 20130256696
    Abstract: A GaN substrate is stored within an atmosphere in which the oxygen concentration is not greater than 15 vol. % and the water-vapor concentration is not greater than 20 g/m3. The GaN substrate (1) has a planar first principal face (1m), and in an arbitrary point (P) along the first principal face (1m) and separated 3 mm or more from the outer edge thereof, the GaN substrate's plane orientation has an off-inclination angle ?? of ?10° or more, 10° or less with respect to the plane orientation of an arbitrarily designated crystalline plane (1a) that is inclined 50° or more, 90° or less with respect to a plane (1c), being either the (0001) plane or the (000 1) plane, through the arbitrary point. This enables storing GaN substrates whose principal-face plane orientation is other than (0001) or (000 1), making available GaN substrates with which semiconductor devices of favorable properties can be manufactured.
    Type: Application
    Filed: June 3, 2013
    Publication date: October 3, 2013
    Inventors: Hideyuki Ijiri, Seiji Nakahata
  • Publication number: 20130244406
    Abstract: A fabrication method of a group III nitride crystal substance includes the steps of cleaning the interior of a reaction chamber by introducing HCl gas into the reaction chamber, and vapor deposition of a group III nitride crystal substance in the cleaned reaction chamber. A fabrication apparatus of a group III nitride crystal substance includes a configuration to introduce HCl gas into the reaction chamber, and a configuration to grow a group III nitride crystal substance by HVPE. Thus, a fabrication method of a group III nitride crystal substance including the method of effectively cleaning deposits adhering inside the reaction chamber during crystal growth, and a fabrication apparatus employed in the fabrication method are provided.
    Type: Application
    Filed: February 26, 2013
    Publication date: September 19, 2013
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Hitoshi KASAI, Takuji Okahisa, Shunsuke Fujita, Naoki Matsumoto, Hideyuki Ijiri, Fumitaka Sato, Kensaku Motoki, Seiji Nakahata, Koji Uematsu, Ryu Hirota
  • Patent number: 8476158
    Abstract: A GaN substrate storage method of storing, within an atmosphere in which the oxygen concentration is not greater than 15 vol. % and the water-vapor concentration is not greater than 20 g/m3, a GaN substrate (1) having a planar first principal face (1m), and whose plane orientation in an arbitrary point (P) along the first principal face (1m) and separated 3 mm or more from the outer edge thereof has an off-inclination angle ?? of ?10° or more, 10° or less with respect to the plane orientation of an arbitrarily designated crystalline plane (1a) that is inclined 50° or more, 90° or less with respect to a plane (1c), being either the (0001) plane or the (000 1) plane, through the arbitrary point. In this way a method of storing GaN substrates whose principal-face plane orientation is other than (0001) or (000 1), with which semiconductor devices of favorable properties can be manufactured is made available.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: July 2, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideyuki Ijiri, Seiji Nakahata
  • Patent number: 8404569
    Abstract: A fabrication method of a group III nitride crystal substance includes the steps of cleaning the interior of a reaction chamber by introducing HCl gas into the reaction chamber, and vapor deposition of a group III nitride crystal substance in the cleaned reaction chamber. A fabrication apparatus of a group III nitride crystal substance includes a configuration to introduce HCl gas into the reaction chamber, and a configuration to grow a group III nitride crystal substance by HVPE. Thus, a fabrication method of a group III nitride crystal substance including the method of effectively cleaning deposits adhering inside the reaction chamber during crystal growth, and a fabrication apparatus employed in the fabrication method are provided.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: March 26, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hitoshi Kasai, Takuji Okahisa, Shunsuke Fujita, Naoki Matsumoto, Hideyuki Ijiri, Fumitaka Sato, Kensaku Motoki, Seiji Nakahata, Koji Uematsu, Ryu Hirota
  • Patent number: 8227826
    Abstract: Affords a method of storing GaN substrates from which semiconductor devices of favorable properties can be manufactured, the stored substrates, and semiconductor devices and methods of manufacturing the semiconductor devices. In the GaN substrate storing method, a GaN substrate (1) is stored in an atmosphere having an oxygen concentration of 18 vol. % or less, and/or a water-vapor concentration of 12 g/m3 or less. Surface roughness Ra of a first principal face on, and roughness Ra of a second principal face on, the GaN substrate stored by the storing method are brought to no more than 20 nm and to no more than 20 ?m, respectively. In addition, the GaN substrates are rendered such that the principal faces form an off-axis angle with the (0001) plane of from 0.05° to 2° in the <1 100> direction, and from 0° to 1° in the <11 20> direction.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: July 24, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideyuki Ijiri, Seiji Nakahata
  • Publication number: 20110278588
    Abstract: A GaN substrate storage method of storing, within an atmosphere in which the oxygen concentration is not greater than 15 vol. % and the water-vapor concentration is not greater than 20 g/m3, a GaN substrate (1) having a planar first principal face (1m), and whose plane orientation in an arbitrary point (P) along the first principal face (1m) and separated 3 mm or more from the outer edge thereof has an off-inclination angle ?? of ?10° or more, 10° or less with respect to the plane orientation of an arbitrarily designated crystalline plane (1a) that is inclined 50° or more, 90° or less with respect to a plane (1c), being either the (0001) plane or the (000 1) plane, through the arbitrary point. In this way a method of storing GaN substrates whose principal-face plane orientation is other than (0001) or (000 1), with which semiconductor devices of favorable properties can be manufactured is made available.
    Type: Application
    Filed: July 22, 2011
    Publication date: November 17, 2011
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Hideyuki Ijiri, Seiji Nakahata
  • Publication number: 20100326876
    Abstract: Affords a method of storing GaN substrates from which semiconductor devices of favorable properties can be manufactured, the stored substrates, and semiconductor devices and methods of manufacturing the semiconductor devices. In the GaN substrate storing method, a GaN substrate (1) is stored in an atmosphere having an oxygen concentration of 18 vol. % or less, and/or a water-vapor concentration of 12 g/m3 or less. Surface roughness Ra of a first principal face on, and roughness Ra of a second principal face on, the GaN substrate stored by the storing method are brought to no more than 20 nm and to no more than 20 ?m, respectively. In addition, the GaN substrates are rendered such that the principal faces form an off-axis angle with the (0001) plane of from 0.05° to 2° in the <1 100> direction, and from 0° to 1° in the <11 20> direction.
    Type: Application
    Filed: September 7, 2010
    Publication date: December 30, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hideyuki Ijiri, Seiji Nakahata
  • Patent number: 7858502
    Abstract: A fabrication method of a group III nitride crystal substance includes the steps of cleaning the interior of a reaction chamber by introducing HCl gas into the reaction chamber, and vapor deposition of a group III nitride crystal substance in the cleaned reaction chamber. A fabrication apparatus of a group III nitride crystal substance includes a configuration to introduce HCl gas into the reaction chamber, and a configuration to grow a group III nitride crystal substance by HVPE. Thus, a fabrication method of a group III nitride crystal substance including the method of effectively cleaning deposits adhering inside the reaction chamber during crystal growth, and a fabrication apparatus employed in the fabrication method are provided.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: December 28, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hitoshi Kasai, Takuji Okahisa, Shunsuke Fujita, Naoki Matsumoto, Hideyuki Ijiri, Fumitaka Sato, Kensaku Motoki, Seiji Nakahata, Koji Uematsu, Ryu Hirota
  • Patent number: 7811908
    Abstract: Affords a method of storing GaN substrates from which semiconductor devices of favorable properties can be manufactured, the stored substrates, and semiconductor devices and methods of manufacturing the semiconductor devices. In the GaN substrate storing method, a GaN substrate (1) is stored in an atmosphere having an oxygen concentration of 18 vol. % or less, and/or a water-vapor concentration of 12 g/m3 or less. Surface roughness Ra of a first principal face on, and roughness Ra of a second principal face on, the GaN substrate stored by the storing method are brought to no more than 20 nm and to no more than 20 ?m, respectively. In addition, the GaN substrates are rendered such that the principal faces form an off-axis angle with the (0001) plane of from 0.05° to 2° in the <1 100> direction, and from 0° to 1° in the <11 20> direction.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: October 12, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideyuki Ijiri, Seiji Nakahata
  • Publication number: 20100009526
    Abstract: A fabrication method of a group III nitride crystal substance includes the steps of cleaning the interior of a reaction chamber by introducing HCl gas into the reaction chamber, and vapor deposition of a group III nitride crystal substance in the cleaned reaction chamber. A fabrication apparatus of a group III nitride crystal substance includes a configuration to introduce HCl gas into the reaction chamber, and a configuration to grow a group III nitride crystal substance by HVPE. Thus, a fabrication method of a group III nitride crystal substance including the method of effectively cleaning deposits adhering inside the reaction chamber during crystal growth, and a fabrication apparatus employed in the fabrication method are provided.
    Type: Application
    Filed: August 13, 2009
    Publication date: January 14, 2010
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Hitoshi KASAI, Takuji OKAHISA, Shunsuke FUJITA, Naoki MATSUMOTO, Hideyuki IJIRI, Fumitaka SATO, Kensaku MOTOKI, Seiji NAKAHATA, Koji UEMATSU, Ryu HIROTA
  • Patent number: 7589000
    Abstract: A fabrication method of a group III nitride crystal substance includes the steps of cleaning the interior of a reaction chamber by introducing HCl gas into the reaction chamber, and vapor deposition of a group III nitride crystal substance in the cleaned reaction chamber. A fabrication apparatus of a group III nitride crystal substance includes a configuration to introduce HCl gas into the reaction chamber, and a configuration to grow a group III nitride crystal substance by HVPE. Thus, a fabrication method of a group III nitride crystal substance including the method of effectively cleaning deposits adhering inside the reaction chamber during crystal growth, and a fabrication apparatus employed in the fabrication method are provided.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: September 15, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hitoshi Kasai, Takuji Okahisa, Shunsuke Fujita, Naoki Matsumoto, Hideyuki Ijiri, Fumitaka Sato, Kensaku Motoki, Seiji Nakahata, Koji Uematsu, Ryu Hirota
  • Publication number: 20080003440
    Abstract: Affords a method of storing GaN substrates from which semiconductor devices of favorable properties can be manufactured, the stored substrates, and semiconductor devices and methods of manufacturing the semiconductor devices. In the GaN substrate storing method, a GaN substrate (1) is stored in an atmosphere having an oxygen concentration of 18 vol. % or less, and/or a water-vapor concentration of 12 g/m3 or less. Surface roughness Ra of a first principal face on, and roughness Ra of a second principal face on, the GaN substrate stored by the storing method are brought to no more than 20 nm and to no more than 20 ?m, respectively. In addition, the GaN substrates are rendered such that the principal faces form an off-axis angle with the (0001) plane of from 0.05° to 2° in the <1 100> direction, and from 0° to 1° in the <11 20> direction.
    Type: Application
    Filed: June 14, 2007
    Publication date: January 3, 2008
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hideyuki Ijiri, Seiji Nakahata