Patents by Inventor Hideyuki Kazumi

Hideyuki Kazumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240144560
    Abstract: A training method that performs learning using appropriate low-quality image and high-quality image is provided. The invention is directed to a training method including executing learning by inputting a first image generated under a first image generation condition and a second image generated under a second image generation condition different from the first image generation condition to a learning apparatus that adjusts parameters so as to suppress an error between an input image and a converted image, in which the second image is selected such that an index value extracted from the second image is the same as or has a predetermined relationship with an index value extracted from the first image, or the second image is output from a second image generation tool different from a first image generation tool for generating the first image.
    Type: Application
    Filed: March 3, 2022
    Publication date: May 2, 2024
    Inventors: Zhaohui CHENG, Yasutaka TOYODA, Hideto DOHI, Hiroya OHTA, Hideyuki KAZUMI
  • Patent number: 11798780
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: October 24, 2023
    Assignee: Hitachi High-Tech Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hajime Kawano, Shahedul Hoque, Kumiko Shimizu, Hiroyuki Takahashi
  • Patent number: 11769650
    Abstract: Provided are a multistage-connected multipole and a charged particle beam device that can be produced with precision in machining without requiring precision in brazing between a pole and an insulation material. This multi-stage connected multipole 100 comprises: a plurality of poles Q1-Q4 that are arranged along the optical-axis direction of a charged particle beam, and that have cutouts Non surfaces facing each other; and braces P1-P3 that are arranged between the plurality of poles Q1-Q4 and are made of an insulator. The poles Q1-Q4 and the braces P1-P3 are joined by fitting the braces P1-P3 into the cutouts N and applying brazing so as to be interposed by a bonding material.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: September 26, 2023
    Assignee: Hitachi High-Tech Corporation
    Inventors: Hideto Dohi, Yoshinobu Ootaka, Masashi Inada, Hideyuki Kazumi, Hideo Kashima
  • Publication number: 20230113759
    Abstract: The present invention has been made in view of the above problems, and an object thereof is to provide a charged particle beam device capable of improving the reproducibility of the magnetic field response of a magnetic field lens and realizing highly-accurate electron orbit control in a short time. A charged particle beam device according to the present invention generates an excitation current of a magnetic field lens by combining a direct current with an alternating current (see FIG. 6A).
    Type: Application
    Filed: May 13, 2020
    Publication date: April 13, 2023
    Inventors: Shingo HAYASHI, Hideyuki KAZUMI, Zhaohui CHENG, Hideto DOHI
  • Publication number: 20220415605
    Abstract: A charged particle optical system includes an aberration corrector 209 that corrects aberration of a charged particle beam and has multipoles of a plurality of stages. The aberration corrector generates a plurality of multipole fields in a superimposed manner for each of the multipoles of the plurality of stages in order to correct the aberration of the charged particle beam. In order to reduce the influence of a parasitic field due to distortion of the multipole, for a first multipole field to be generated in a multipole of any stage among the plurality of stages, a value of a predetermined correction voltage or correction current to be applied to a plurality of poles for generating the first multipole field is corrected so as to eliminate movement of an observation image obtained based on electrons detected from a detector 215 by irradiating a sample with the charged particle beam before and after the first multipole field is generated.
    Type: Application
    Filed: November 21, 2019
    Publication date: December 29, 2022
    Inventors: Shingo HAYASHI, Hideto DOHI, Zhaohui CHENG, Hideyuki KAZUMI
  • Patent number: 11443914
    Abstract: The objective of the present invention is to use brightness images acquired under different energy conditions to estimate the size of a defect in the depth direction in a simple manner. A charged-particle beam device according to the present invention determines the brightness ratio for each irradiation position on a brightness image while changing parameters varying the signal amount, estimates the position of the defect in the depth direction on the basis of the parameters at which the brightness ratio is at a minimum, and estimates the size of the defect in the depth direction on the basis of the magnitude of the brightness ratio (see FIG. 5).
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: September 13, 2022
    Assignee: Hitachi High-Tech Corporation
    Inventors: Toshiyuki Yokosuka, Hajime Kawano, Kouichi Kurosawa, Hideyuki Kazumi
  • Publication number: 20220122804
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Application
    Filed: December 28, 2021
    Publication date: April 21, 2022
    Inventors: Toshiyuki YOKOSUKA, Chahn LEE, Hideyuki KAZUMI, Hajime KAWANO, Shahedul HOQUE, Kumiko SHIMIZU, Hiroyuki TAKAHASHI
  • Publication number: 20220037113
    Abstract: Provided are a multistage-connected multipole and a charged particle beam device that can be produced with precision in machining without requiring precision in brazing between a pole and an insulation material. This multi-stage connected multipole 100 comprises: a plurality of poles Q1-Q4 that are arranged along the optical-axis direction of a charged particle beam, and that have cutouts Non surfaces facing each other; and braces P1-P3 that are arranged between the plurality of poles Q1-Q4 and are made of an insulator. The poles Q1-Q4 and the braces P1-P3 are joined by fitting the braces P1-P3 into the cutouts N and applying brazing so as to be interposed by a bonding material.
    Type: Application
    Filed: December 23, 2019
    Publication date: February 3, 2022
    Inventors: Hideto DOHI, Yoshinobu OOTAKA, Masashi INADA, Hideyuki KAZUMI, Hideo KASHIMA
  • Patent number: 11239052
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: February 1, 2022
    Assignee: Hitachi High-Tech Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hajime Kawano, Shahedul Hoque, Kumiko Shimizu, Hiroyuki Takahashi
  • Patent number: 11211226
    Abstract: The present disclosure provides a pattern cross-sectional shape estimation system which includes a charged particle ray device which includes a scanning deflector that scans a charged particle beam, a detector that detects charged particles, and an angle discriminator that is disposed in a front stage of the detector and discriminates charged particles to be detected, and an arithmetic device that generates a luminance of an image, and calculates a signal waveform of a designated region on the image using the luminance. The arithmetic device generates angle discrimination images using signal electrons at different detection angles, and estimates a side wall shape of a measurement target pattern.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: December 28, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Toshiyuki Yokosuka, Hirohiko Kitsuki, Daisuke Bizen, Makoto Suzuki, Yusuke Abe, Kenji Yasui, Mayuka Osaki, Hideyuki Kazumi
  • Publication number: 20210366685
    Abstract: The objective of the present invention is to use brightness images acquired under different energy conditions to estimate the size of a defect in the depth direction in a simple manner. A charged-particle beam device according to the present invention determines the brightness ratio for each irradiation position on a brightness image while changing parameters varying the signal amount, estimates the position of the defect in the depth direction on the basis of the parameters at which the brightness ratio is at a minimum, and estimates the size of the defect in the depth direction on the basis of the magnitude of the brightness ratio (see FIG. 5).
    Type: Application
    Filed: December 18, 2018
    Publication date: November 25, 2021
    Inventors: Toshiyuki YOKOSUKA, Hajime KAWANO, Kouichi KUROSAWA, Hideyuki KAZUMI
  • Patent number: 11133147
    Abstract: The purpose of the present invention is to provide a charged particle ray device which is capable of simply estimating the cross-sectional shape of a pattern. The charged particle ray device according to the present invention acquires a detection signal for each different discrimination condition of an energy discriminator, and estimates the cross-sectional shape of a sample by comparing the detection signal for each discrimination condition with a reference pattern (see FIG. 5).
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: September 28, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Toshiyuki Yokosuka, Hajime Kawano, Kouichi Kurosawa, Hideyuki Kazumi, Chahn Lee
  • Patent number: 11101100
    Abstract: The purpose of the present invention is to provide a charged particle ray device which is capable of simply estimating the cross-sectional shape of a pattern. The charged particle ray device according to the present invention acquires a detection signal for each different discrimination condition of an energy discriminator, and estimates the cross-sectional shape of a sample by comparing the detection signal for each discrimination condition with a reference pattern (see FIG. 5).
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: August 24, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Toshiyuki Yokosuka, Hajime Kawano, Kouichi Kurosawa, Hideyuki Kazumi, Chahn Lee
  • Patent number: 11011348
    Abstract: Provided is a scanning electron microscope. The scanning electron microscope is capable of removing a charge generated on a side wall of a deep hole or groove, and inspects and measures a bottom portion of the deep hole or groove with high accuracy.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: May 18, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Daisuke Bizen, Natsuki Tsuno, Takafumi Miwa, Makoto Sakakibara, Toshiyuki Yokosuka, Hideyuki Kazumi
  • Publication number: 20200321189
    Abstract: The present disclosure provides a pattern cross-sectional shape estimation system which includes a charged particle ray device which includes a scanning deflector that scans a charged particle beam, a detector that detects charged particles, and an angle discriminator that is disposed in a front stage of the detector and discriminates charged particles to be detected, and an arithmetic device that generates a luminance of an image, and calculates a signal waveform of a designated region on the image using the luminance. The arithmetic device generates angle discrimination images using signal electrons at different detection angles, and estimates a side wall shape of a measurement target pattern.
    Type: Application
    Filed: March 6, 2020
    Publication date: October 8, 2020
    Inventors: Toshiyuki YOKOSUKA, Hirohiko KITSUKI, Daisuke BIZEN, Makoto SUZUKI, Yusuke ABE, Kenji YASUI, Mayuka OSAKI, Hideyuki KAZUMI
  • Publication number: 20200312615
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Application
    Filed: June 12, 2020
    Publication date: October 1, 2020
    Inventors: Toshiyuki YOKOSUKA, Chahn LEE, Hideyuki KAZUMI, Hajime KAWANO, Shahedul HOQUE, Kumiko SHIMIZU, Hiroyuki TAKAHASHI
  • Publication number: 20200294756
    Abstract: The purpose of the present invention is to provide a charged particle ray device which is capable of simply estimating the cross-sectional shape of a pattern. The charged particle ray device according to the present invention acquires a detection signal for each different discrimination condition of an energy discriminator, and estimates the cross-sectional shape of a sample by comparing the detection signal for each discrimination condition with a reference pattern (see FIG. 5).
    Type: Application
    Filed: August 24, 2018
    Publication date: September 17, 2020
    Inventors: Toshiyuki YOKOSUKA, Hajime KAWANO, Kouichi KUROSAWA, Hideyuki KAZUMI, Chahn LEE
  • Patent number: 10727024
    Abstract: A charged particle beam device using a multi-pole type aberration corrector includes: a charged particle source which generates a primary charged particle beam; an aberration correction optical system which corrects aberrations of the primary charged particle beam; a detection unit which detects a secondary charged particle generated from a sample irradiated with the primary charged particle beam whose aberrations have been corrected; an image forming unit which forms a charged particle image of the sample from a signal obtained by detecting the secondary charged particle; an aberration correction amount calculation unit which processes the charged particle image, separates aberrations having different symmetries, selects an aberration to be preferentially corrected from the separated aberrations, and calculates a correction amount of the aberration correction optical system; and an aberration correction optical system control unit which controls the aberration correction optical system based on the calculate
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: July 28, 2020
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kotoko Urano, Zhaohui Cheng, Takeyoshi Ohashi, Hideyuki Kazumi
  • Patent number: 10720306
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: July 21, 2020
    Assignee: Hitachi High-Tech Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hajime Kawano, Shahedul Hoque, Kumiko Shimizu, Hiroyuki Takahashi
  • Patent number: 10541103
    Abstract: The purpose of the present invention is to reduce the amount of charged particles that are lost by colliding with the interior of a column of a charged particle beam device, and detect charged particles with high efficiency. To achieve this purpose, proposed is a charged particle beam device provided with: an objective lens that focuses a charged particle beam; a detector that is disposed between the objective lens and a charged particle source; a deflector that deflects charged particles emitted from a sample such that the charged particles separate from the axis of the charged particle beam; and a plurality of electrodes that are disposed between the deflector and the objective lens and that form a plurality of electrostatic lenses for focusing the charged particles emitted from the sample on a deflection point of the deflector.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: January 21, 2020
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yuzuru Mizuhara, Toshiyuki Yokosuka, Hideyuki Kazumi, Kouichi Kurosawa, Kenichi Myochin