Patents by Inventor Hideyuki Terazono

Hideyuki Terazono has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150299758
    Abstract: The present invention provides a method for producing a microscopic object comprising locating a microscopic structure, formed of an organic substance, to be used as a mold on a substrate, depositing an intended element on a surface of the organic structure by a vacuum vapor deposition method or the like, and then decomposing and thus removing the organic structure as the mold by an ultraviolet-ozone process or the like to obtain the microscopic structure formed of only an intended element.
    Type: Application
    Filed: November 8, 2012
    Publication date: October 22, 2015
    Applicant: Kanagawa Academy of Science and Technology
    Inventors: Kenji YASUDA, Hyonchol KIM, Hideyuki TERAZONO, Akihiro HATTORI
  • Publication number: 20150132766
    Abstract: The present invention provides a cell enrichment/purification device having a function of continuously enriching cells, a function of locating the cells in a particular area of a flow path in a continuous array after the cell enrichment, a function of recognizing the shape of the cells and fluorescence emission from the cells at the same time in units of one cell based on an image, and a function of recognizing the cells based on the information on the shape and fluorescence emission to separate/purify the cells.
    Type: Application
    Filed: March 29, 2013
    Publication date: May 14, 2015
    Applicants: ON-CHIP CELLOMICS CONSORTIUM, KANAGAWA ACADEMY OF SCIENCE AND TECHNOLOGY
    Inventors: Kenji Yasuda, Hyonchol Kim, Hideyuki Terazono, Akihiro Hattori
  • Patent number: 9023294
    Abstract: Provided is a cell concentration and purification device, having: a function of continuously concentrating cells; a function of then subsequently disposing the cells continuously in a specific region of a channel; a function of simultaneously recognizing, based on an image, the shape and fluorescence emission of each single cell; and a function of recognizing the cells and then separating and purifying the same based on the data relating to the shape and fluorescence emission thereof.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: May 5, 2015
    Assignees: Kanagawa Academy of Science and Technology, National University Corporation Tokyo Medical and Dental University, On-Chip Cellonics Consortium Co., Ltd.
    Inventors: Hideyuki Terazono, Kenji Yasuda, Masahito Hayashi, Hiroyuki Takei, Akihiro Hattori
  • Publication number: 20150079598
    Abstract: The present invention provides a high-speed gene amplification device including an additional mechanism that allows more stable temperature control, a pre-treatment mechanism that performs pre-treatment including a pre-PCR reaction reverse transcription reaction process that allows RNA detection, a melting curve analysis function, chip technology optimal for holding liquid droplets and performing optical measurements and an optical measurement function for a PCR reaction.
    Type: Application
    Filed: March 5, 2013
    Publication date: March 19, 2015
    Applicants: KANAGAWA ACADEMY OF SCIENCE AND TECHNOLOGY, ON-CHIP CELLOMICS CONSORTIUM
    Inventors: Kenji Yasuda, Hideyuki Terazono, Hyonchol Kim, Akihiro Hattori
  • Publication number: 20140370492
    Abstract: The present invention provides a liquid reflux reaction control device including an additional mechanism that allows more stable temperature control, a pre-treatment mechanism that performs pre-treatment including a pre-PCR reaction reverse transcription reaction process that allows RNA detection, a melting curve analysis function, chip technology optimal for holding liquid droplets and optical measurement and the optical measurement function for PCR, and a temperature gradient control mechanism using a quantitative infrared light irradiation/absorption control technique.
    Type: Application
    Filed: November 27, 2012
    Publication date: December 18, 2014
    Inventors: Kenji Yasuda, Hideyuki Terazono, Akihiro Hattori
  • Patent number: 8900854
    Abstract: The present invention provides a liquid reflux reaction control device comprising: a reaction vessel having one or a plurality of wells configured to accommodate a sample; a heat exchange vessel provided in contact with the reaction vessel so as to conduct heat to the reaction vessel, and comprising an inlet and an outlet respectively for introducing and draining a liquid of a predetermined temperature; a plurality of liquid reservoir tanks provided with a temperature-controllable heat source for maintaining liquids of predetermined temperatures; a tubular flow channel that connects the inlet and the outlet of the heat exchange vessel with the liquid reservoir tanks; a pump disposed on the tubular flow channel, and configured to circulate the liquid between the heat exchange vessel and the liquid reservoir tank; and a switching valve disposed on the tubular flow channel, and configured to control the flow of the circulating liquid, which controls the temperature of the reaction vessel to keep a desired tem
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 2, 2014
    Assignees: Kanagawa Academy of Science and Technology, National University Corporation Tokyo Medical and Dental University
    Inventors: Hiroyuki Takei, Hideyuki Terazono, Kenji Yasuda
  • Publication number: 20140248690
    Abstract: One embodiment provides a liquid reflux reaction control device comprising: a reaction vessel having one or a plurality of wells configured to accommodate a sample; a heat exchange vessel provided in contact with the reaction vessel so as to conduct heat to the reaction vessel, and comprising an inlet and an outlet respectively for introducing and draining a liquid of a predetermined temperature; a plurality of liquid reservoir tanks provided with a temperature-controllable heat source for maintaining liquids of predetermined temperatures; a tubular flow channel that connects the inlet and the outlet of the heat exchange vessel with the liquid reservoir tanks; a pump disposed on the tubular flow channel, and configured to circulate the liquid between the heat exchange vessel and the liquid reservoir tank; and a switching valve disposed on the tubular flow channel, and configured to control the flow of the circulating liquid.
    Type: Application
    Filed: May 9, 2014
    Publication date: September 4, 2014
    Applicants: KANAGAWA ACADEMY OF SCIENCE AND TECHNOLOGY, NATIONAL UNIVERSITY CORPORATION TOKYO MEDICAL AND DENTAL UNIVERSITY
    Inventors: Hiroyuki Takei, Hideyuki TERAZONO, Kenji YASUDA
  • Publication number: 20130314526
    Abstract: Provided is a cell concentration/purification device having a function of successively locating cells in a specific area of a microchannel, and a function of sequentially capturing cell images by use of light from a plurality of monochromatic light sources on an image basis, and performing comparative analysis of the cell images to recognize individual cells based on information on the shape of the cells and an absorption spectral distribution of the cells or inside of the cells, thereby selectively separating/purifying the cells.
    Type: Application
    Filed: September 16, 2011
    Publication date: November 28, 2013
    Inventors: Kenji Yasuda, Hideyuki Terazono, Hyonchol Kim, Masahito Hayashi, Akihiro Hattori, Kazuto Nishio, Tokuzo Arao, Yohei Miyagi, Takashi Ohtsu
  • Publication number: 20130029407
    Abstract: Provided is a cell concentration and purification device, having: a function of continuously concentrating cells; a function of then subsequently disposing the cells continuously in a specific region of a channel; a function of simultaneously recognizing, based on an image, the shape and fluorescence emission of each single cell; and a function of recognizing the cells and then separating and purifying the same based on the data relating to the shape and fluorescence emission thereof.
    Type: Application
    Filed: February 24, 2011
    Publication date: January 31, 2013
    Inventors: Hideyuki Terazono, Kenji Yasuda, Masahito Hayashi, Hiroyuki Takei, Akihiro Hattori
  • Patent number: 8202720
    Abstract: The present invention provides an apparatus for evaluating a drug effect enabling on-chip evaluation of the effect of a drug while the drug is acting on hERG-expressing cells. The present invention also provides a myocardial toxicity test apparatus and method therefor enabling in vitro myocardial toxicity testing that has previously been performed in vivo. A pulsating cell population and hERG-expressing cells (target model cells) are suitably isolated and arranged on a transparent substrate so that the two form gap junctions. The hERG-expressing cells are arranged on transparent electrodes provided on the transparent substrate. The hERG-expressing cells are exposed to a flow of a liquid containing a drug such that the drug acts thereon. The difference between the normal pulsation of hERG-expressing cells and the pulsation when a drug is acting thereon is captured via electric signals obtained from electrodes, and the properties of the change in potential are evaluated.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: June 19, 2012
    Assignees: Mitsubishi Chemical Medience Corporation, National University Corporation Tokyo Medical and Dental University
    Inventors: Kenji Yasuda, Atsushi Sugiyama, Kentaro Ando, Fumimasa Nomura, Hideyuki Terazono, Tomoyuki Kaneko, Mamoru Fukushima
  • Publication number: 20120077262
    Abstract: The present invention provides a liquid reflux reaction control device comprising: a reaction vessel having one or a plurality of wells configured to accommodate a sample; a heat exchange vessel provided in contact with the reaction vessel so as to conduct heat to the reaction vessel, and comprising an inlet and an outlet respectively for introducing and draining a liquid of a predetermined temperature; a plurality of liquid reservoir tanks provided with a temperature-controllable heat source for maintaining liquids of predetermined temperatures; a tubular flow channel that connects the inlet and the outlet of the heat exchange vessel with the liquid reservoir tanks; a pump disposed on the tubular flow channel, and configured to circulate the liquid between the heat exchange vessel and the liquid reservoir tank; and a switching valve disposed on the tubular flow channel, and configured to control the flow of the circulating liquid, which controls the temperature of the reaction vessel to keep a desired tem
    Type: Application
    Filed: March 31, 2010
    Publication date: March 29, 2012
    Inventors: Hiroyuki Takei, Hideyuki Terazono, Kenji Yasuda
  • Publication number: 20100178692
    Abstract: The present invention provides an apparatus for evaluating a drug effect enabling on-chip evaluation of the effect of a drug while the drug is acting on hERG-expressing cells. The present invention also provides a myocardial toxicity test apparatus and method therefor enabling in vitro myocardial toxicity testing that has previously been performed in vivo. A pulsating cell population and hERG-expressing cells (target model cells) are suitably isolated and arranged on a transparent substrate so that the two form gap junctions. The hERG-expressing cells are arranged on transparent electrodes provided on the transparent substrate. The hERG-expressing cells are exposed to a flow of a liquid containing a drug such that the drug acts thereon. The difference between the normal pulsation of hERG-expressing cells and the pulsation when a drug is acting thereon is captured via electric signals obtained from electrodes, and the properties of the change in potential are evaluated.
    Type: Application
    Filed: June 6, 2008
    Publication date: July 15, 2010
    Applicants: MITSUBISHI CHEMICAL MEDIENCE CORPORATION, NATIONAL UNIVERSITY CORPORATION TOKYO MEDICAL and DENTAL UNIVERSITY
    Inventors: Kenji Yasuda, Atsushi Sugiyama, Kentaro Ando, Fumimasa Nomura, Hideyuki Terazono, Tomoyuki Kaneko, Mamoru Fukushima
  • Publication number: 20100173351
    Abstract: A chip has been developed that can accurately measure cell potential and cell morphology on a single cell basis. The chip also constitutes a cardiac model that comprises a closed loop whereupon cardiomyocytes and fibroblasts are suitably dispersed and arranged, and that can evaluate the effects of a drug thereon. An in vitro cardiac reentry model chip is fabricated by constructing a closed loop comprising cardiomyocytes and fibroblasts arrayed on transparent electrodes formed on a transparent substrate by using a constitution where single cells are enclosed in a specific spatial configuration. A pulse wave of a random cardiomyocyte or a specific cardiomyocyte is propagated on both sides of the loop, and the pulsation status of the cells in the loop is detected electrically. A drug is applied to this cardiac reentry model chip, and the benefit or toxicity of the drug to cardiomyocytes is evaluated by measuring the cell potentials of individual cells.
    Type: Application
    Filed: June 6, 2008
    Publication date: July 8, 2010
    Applicant: MITSUBISHI CHEMICAL MEDIENCE CORPORATION
    Inventors: Kenji Yasuda, Atsushi Sugiyama, Kentaro Ando, Fumimasa Nomura, Hideyuki Terazono, Tomoyuki Kaneko, Mamoru Fukushima
  • Publication number: 20080003678
    Abstract: An inexpensive cell analysis and separation apparatus using a flow channel formed on one surface of a substrate and a chip replaceable for each sample, and a method for culturing the separated cells without contamination, are provided. A flow channel for allowing a cell-containing buffer solution to flow is provided. Cells are detected in the middle of the flow channel, and separated to a plurality of downstream flow channels based on whether each cell fulfills a predetermined condition. A culturing tank for collecting the condition-fulfilling cells is covered with a semipermeable membrane at a top surface so as to prevent contamination during cell separation. When the cell separation is finished, the flow channel communicated with the culturing tank accommodating the condition-fulfilling cells is closed, and the culturing tank is cut off from the apparatus and put into a culturing device containing a predetermined medium to culture the cells.
    Type: Application
    Filed: June 28, 2007
    Publication date: January 3, 2008
    Inventors: Akihiro Hattori, Hideyuki Terazono, Kenji Yasuda