Patents by Inventor Hideyuki Uehigashi

Hideyuki Uehigashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11008670
    Abstract: A manufacturing method of a SiC ingot includes a crystal growth step of growing a crystal on a principal plane having an offset angle with respect to a {0001} plane, in which, at least in a latter half growth step of the crystal growth step, after the crystal in the crystal growth step grows 7 mm or more from the principal plane, and in which, the crystal is grown by setting an acute angle, between the {0001} plane and an inclined plane which is perpendicular to a cut section cut along an offset direction and passes through both a center of a crystal growth surface and an offset downstream end portion of the crystal growth surface, to be equal to or more than an angle smaller than an offset angle by 2° and equal to or less than 8.6°.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 18, 2021
    Assignee: SHOWA DENKO K.K.
    Inventors: Yohei Fujikawa, Hideyuki Uehigashi
  • Publication number: 20210102311
    Abstract: A silicon carbide single crystal contains a heavy metal element having a specific gravity higher than a specific gravity of iron. An addition density of the heavy metal element at least in an outer peripheral portion of the silicon carbide single crystal is set to 1×1015 cm?3 or more.
    Type: Application
    Filed: December 16, 2020
    Publication date: April 8, 2021
    Inventors: Yuichiro TOKUDA, Hideyuki UEHIGASHI, Norihiro HOSHINO, Hidekazu TSUCHIDA, Isaho KAMATA
  • Patent number: 10896831
    Abstract: A supply part includes a first partition, a second partition under the first partition, a third partition under the second partition, a first flow path between the first partition and the second partition allowing a first gas to be introduced therein, a second flow path between the second partition and the third partition allowing a second gas to be introduced therein, a first piping extending from the second partition to reach below the third partition and being communicated with the first flow path, a second piping extending from the third partition to reach below the third partition and being communicated with the second flow path, and a convex portion provided on an outer circumferential surface of the first piping or an inner circumferential surface of the second piping protruding from one of the outer circumferential surface and the inner circumferential surface toward the other one.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 19, 2021
    Assignees: NuFlare Technology, Inc., Showa Denko K.K., Central Research Institute of Electric Power Industry
    Inventors: Kunihiko Suzuki, Naohisa Ikeya, Keisuke Fukada, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Hiroaki Fujibayashi, Hideyuki Uehigashi, Masami Naito, Kazukuni Hara, Hirofumi Aoki, Takahiro Kozawa
  • Patent number: 10840339
    Abstract: A silicon carbide semiconductor substrate includes a first conductivity type substrate doped with a first conductivity type impurity to have a first conductivity type and having a specific resistance of 30 m?cm or less. A lifetime of minority carriers in the first conductivity type substrate is set to 100 nsec or less.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: November 17, 2020
    Assignee: DENSO CORPORATION
    Inventor: Hideyuki Uehigashi
  • Publication number: 20200212184
    Abstract: A crystalline oxide semiconductor with excellent crystalline qualities that is useful for semiconductors requiring heat dissipation is provided. A crystalline oxide semiconductor including a first crystal axis, a second crystal axis, a first side, and a second side that is shorter than the first side, a linear thermal expansion coefficient of the first crystal axis is smaller than a linear thermal expansion coefficient of the second crystal axis, a direction of the first side is parallel and/or substantially parallel to a direction of the first crystal axis, and a direction of the second side is parallel and/or substantially parallel to a direction of the second crystal axis.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 2, 2020
    Inventors: Isao TAKAHASHI, Tatsuya TORIYAMA, Masahiro SUGIMOTO, Takashi SHINOHE, Hideyuki UEHIGASHI, Junji OHARA, Fusao HIROSE, Hideo MATSUKI
  • Publication number: 20200087815
    Abstract: A manufacturing method of a SiC ingot includes a crystal growth step of growing a crystal on a principal plane having an offset angle with respect to a {0001} plane, in which, at least in a latter half growth step of the crystal growth step, after the crystal in the crystal growth step grows 7 mm or more from the principal plane, and in which, the crystal is grown by setting an acute angle, between the {0001} plane and an inclined plane which is perpendicular to a cut section cut along an offset direction and passes through both a center of a crystal growth surface and an offset downstream end portion of the crystal growth surface, to be equal to or more than an angle smaller than an offset angle by 2° and equal to or less than 8.6°.
    Type: Application
    Filed: December 22, 2017
    Publication date: March 19, 2020
    Applicant: SHOWA DENKO K.K.
    Inventors: Yohei FUJIKAWA, Hideyuki UEHIGASHI
  • Publication number: 20200083330
    Abstract: A method for producing a SiC epitaxial wafer according to the present embodiment includes: an epitaxial growth step of growing the epitaxial layer on the SiC single crystal substrate by feeding an Si-based raw material gas, a C-based raw material gas, and a gas including a Cl element to a surface of a SiC single crystal substrate, in which the epitaxial growth step is performed under growth conditions that a film deposition pressure is 30 torr or less, a Cl/Si ratio is in a range of 8 to 12, a C/Si ratio is in a range of 0.8 to 1.2, and a growth rate is 50 ?m/h or more from an initial growth stage.
    Type: Application
    Filed: April 19, 2018
    Publication date: March 12, 2020
    Applicants: SHOWA DENKO K.K., Central Research Institute of Electric Power Industry, DENSO CORPORATION
    Inventors: Keisuke FUKADA, Naoto ISHIBASHI, Akira BANDO, Masahiko ITO, Isaho KAMATA, Hidekazu TSUCHIDA, Kazukuni HARA, Masami NAITO, Hideyuki UEHIGASHI, Hiroaki FUJIBAYASHI, Hirofumi AOKI, Toshikazu SUGIURA, Katsumi SUZUKI
  • Publication number: 20190376206
    Abstract: This SiC epitaxial wafer includes: a SiC single crystal substrate of which a main surface has an off-angle of 0.4° to 5° with respect to (0001) plane; and an epitaxial layer provided on the SiC single crystal substrate, wherein the epitaxial layer has a basal plane dislocation density of 0.1 pieces/cm2 or less that is a density of basal plane dislocations extending from the SiC single crystal substrate to an outer surface and an intrinsic 3C triangular defect density of 0.1 pieces/cm2 or less.
    Type: Application
    Filed: December 25, 2017
    Publication date: December 12, 2019
    Applicants: SHOWA DENKO K.K, Central Research Institute of Electric Power Industry, DENSO CORPORATION
    Inventors: Keisuke FUKADA, Naoto ISHIBASHI, Akira BANDO, Masahiko ITO, Isaho KAMATA, Hidekazu TSUCHIDA, Kazukuni HARA, Masami NAITO, Hideyuki UEHIGASHI, Hiroaki FUJIBAYASHI, Hirofumi AOKI, Toshikazu SUGIURA, Katsumi SUZUKI
  • Publication number: 20190360118
    Abstract: A SiC single crystal composite includes: a central portion positioned at a center in plan view; and an outer circumferential portion surrounding an outer circumference of the central portion, in which crystal planes of the central portion and the outer circumferential portion are inclined to each other or different from each other, a boundary is present between the central portion and the outer circumferential portion, and a direction of a crystal constituting the central portion and a direction of a crystal constituting the outer circumferential portion are different from each other via the boundary.
    Type: Application
    Filed: November 14, 2017
    Publication date: November 28, 2019
    Applicants: SHOWA DENKO K.K., DENSO CORPORATION
    Inventors: Yohei FUJIKAWA, Hideyuki UEHIGASHI
  • Publication number: 20190252503
    Abstract: A silicon carbide semiconductor substrate includes a first conductivity type substrate doped with a first conductivity type impurity to have a first conductivity type and having a specific resistance of 30 m?cm or less. A lifetime of minority carriers in the first conductivity type substrate is set to 100 nsec or less.
    Type: Application
    Filed: January 23, 2019
    Publication date: August 15, 2019
    Inventor: Hideyuki UEHIGASHI
  • Patent number: 10262863
    Abstract: A method for manufacturing a SiC epitaxial wafer according to one aspect of the present invention includes separately introducing, into a reaction space for SiC epitaxial growth, a basic N-based gas composed of molecules containing an N atom within the molecular structure but having neither a double bond nor a triple bond between nitrogen atoms, and a Cl-based gas composed of molecules containing a Cl atom within the molecular structure, and mixing the N-based gas and the Cl-based gas at a temperature equal to or higher than the boiling point or sublimation temperature of a solid product generated by mixing the N-based gas and the Cl-based gas.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: April 16, 2019
    Assignees: SHOWA DENKO K.K., Central Research Institute Of Electric Power Industry
    Inventors: Keisuke Fukada, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Hideyuki Uehigashi, Hiroaki Fujibayashi, Masami Naito, Kazukuni Hara, Takahiro Kozawa, Hirofumi Aoki
  • Publication number: 20180374721
    Abstract: A supply part includes a first partition, a second partition under the first partition, a third partition under the second partition, a first flow path between the first partition and the second partition allowing a first gas to be introduced therein, a second flow path between the second partition and the third partition allowing a second gas to be introduced therein, a first piping extending from the second partition to reach below the third partition and being communicated with the first flow path, a second piping extending from the third partition to reach below the third partition and being communicated with the second flow path, and a convex portion provided on an outer circumferential surface of the first piping or an inner circumferential surface of the second piping protruding from one of the outer circumferential surface and the inner circumferential surface toward the other one.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: Kunihiko Suzuki, Naohisa Ikeya, Keisuke Fukada, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Hiroaki Fujibayashi, Hideyuki Uehigashi, Masami Naito, Kazukuni Hara, Hirofumi Aoki, Takahiro Kozawa
  • Publication number: 20170345658
    Abstract: A method for manufacturing a SiC epitaxial wafer according to one aspect of the present invention includes separately introducing, into a reaction space for SiC epitaxial growth, a basic N-based gas composed of molecules containing an N atom within the molecular structure but having neither a double bond nor a triple bond between nitrogen atoms, and a Cl-based gas composed of molecules containing a Cl atom within the molecular structure, and mixing the N-based gas and the Cl-based gas at a temperature equal to or higher than the boiling point or sublimation temperature of a solid product generated by mixing the N-based gas and the Cl-based gas.
    Type: Application
    Filed: December 8, 2015
    Publication date: November 30, 2017
    Applicants: SHOWA DENKO K.K., Central Research Institute of Electric Power Industry
    Inventors: Keisuke FUKADA, Masahiko ITO, Isaho KAMATA, Hidekazu TSUCHIDA, Hideyuki UEHIGASHI, Hiroaki FUJIBAYASHI, Masami NAITO, Kazukuni HARA, Takahiro KOZAWA, Hirofumi AOKI
  • Patent number: 9337276
    Abstract: A silicon carbide semiconductor device includes a junction barrier Schottky diode including a substrate, a drift layer, an insulating film, a Schottky barrier diode, and a plurality of second conductivity type layers. The Schottky barrier diode includes a Schottky electrode and an ohmic electrode. A PN diode is configured by the plurality of second conductivity type layers and the drift layer, and the plurality of second conductivity type layers is formed in stripes only in a direction parallel to a rod-shaped stacking fault.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: May 10, 2016
    Assignee: DENSO CORPORATION
    Inventors: Hideyuki Uehigashi, Masami Naito, Tomoo Morino
  • Publication number: 20150206941
    Abstract: A silicon carbide semiconductor device includes a junction barrier Schottky diode including a substrate, a drift layer, an insulating film, a Schottky barrier diode, and a plurality of second conductivity type layers. The Schottky barrier diode includes a Schottky electrode and an ohmic electrode. A PN diode is configured by the plurality of second conductivity type layers and the drift layer, and the plurality of second conductivity type layers is formed in stripes only in a direction parallel to a rod-shaped stacking fault.
    Type: Application
    Filed: September 12, 2013
    Publication date: July 23, 2015
    Inventors: Hideyuki Uehigashi, Masami Naito, Tomoo Morino