Patents by Inventor Hin-Leung Chau

Hin-Leung Chau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5858809
    Abstract: A method and apparatus for providing a conductive plane beneath a suspended microstructure. A conductive region is diffused into a substrate. A dielectric layer is added, covering the substrate, and then removed from a portion of the conductive region. A spacer layer is deposited over the dielectric and exposed conductive region. A polysilicon layer is deposited over the spacer layer, and formed into the shape of the suspended microstructure. After removal of the spacer layer, the suspended microstructure is left free to move above an exposed conductive plane. The conductive plane is driven to the same potential as the microstructure.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: January 12, 1999
    Assignee: Analog Devices
    Inventors: Kevin Hin-Leung Chau, Roger T. Howe, Richard S. Payne, Yang Zhao, Theresa A. Core, Steven J. Sherman
  • Patent number: 5640039
    Abstract: A method and apparatus for providing a conductive plane beneath a suspended microstructure. A conductive region is diffused into a substrate. A dielectric layer is added, covering the substrate, and then removed from a portion of the conductive region. A spacer layer is deposited over the dielectric and exposed conductive region. A polysilicon layer is deposited over the spacer layer, and formed into the shape of the suspended microstructure. After removal of the spacer layer, the suspended microstructure is left free to move above an exposed conductive plane. The conductive plane is driven to the same potential as the microstructure.
    Type: Grant
    Filed: December 1, 1994
    Date of Patent: June 17, 1997
    Assignee: Analog Devices, Inc.
    Inventors: Kevin Hin-Leung Chau, Roger T. Howe, Richard S. Payne, Yang Zhao, Theresa A. Core, Steven J. Sherman
  • Patent number: 5207103
    Abstract: A capacitive pressure sensor suitable for making highly sensitive, low pressure measurements is disclosed. The sensor may be mounted into a 0.5 mm OD catheter suitable for multipoint pressure measurements from within the coronary artery of the heart. The sensor employs a transducer which consists of a rectangular bulk silicon microdiaphragm several hundred microns on a side by two microns thick, surrounded by a supporting bulk silicon rim about 12 microns thick. Both the diaphragm and the rim are defined by a double diffusion etch-stop technique. The transducer fabrication process features a batch wafer-to-glass electrostatic seal followed by a silicon etch, which eliminates handling of individual small diaphragm structures until die separation and final packaging. An addressable read-out interface circuit may be used with the sensor to provide a high-level output signal, and allows the sensor to be compatible for use on a multisite catheter having only two electrical leads.
    Type: Grant
    Filed: May 18, 1992
    Date of Patent: May 4, 1993
    Inventors: Kensall D. Wise, Hin-Leung Chau
  • Patent number: 5113868
    Abstract: A capactive pressure sensor suitable for making highly sensitive, low pressure measurements is disclosed. The sensor may be mounted into a 0.5 mm OD catheter suitable for multipoint pressure measurements from within the coronary artery of the heart. The sensor employs a transducer which consists of a rectangular bulk silicon micro-diaphragm several hundred microns on a side by two microns thick, surrounded by a supporting bulk silicon rim about 12 microns thick. Both the diaphragm and the rim are defined by a double diffusion etch-stop technique. The transducer fabrication process features a batch wafer-to-glass electrostatic seal followed by a silicon etch, which eliminates handling of individual small diaphragm structures until die separation and final packaging. An addressable read-out interface circuit may be used with the sensor to provide a high-level output signal, and allows the sensor to be compatible for use on a multisite catheter having only two electrical leads.
    Type: Grant
    Filed: December 21, 1990
    Date of Patent: May 19, 1992
    Assignee: The Regents of The University of Michigan
    Inventors: Kensall D. Wise, Hin-Leung Chau
  • Patent number: 5013396
    Abstract: A capacitive pressure sensor suitable for making highly sensitive, low pressure measurements is disclosed. The sensor may be mounted into a 0.5 mm OD catheter suitable for multipoint pressure measurements from within the coronary artery of the heart. The sensor employs a tranducer which consists of a rectangular bulk silicon micro-diaphragm several hundred microns on a side by two microns thick, surrounded by a supporting bulk silicon rim about 12 microns thick. Both the diaphragm and the rim are defined by a double diffusion etch-stop technique. The transducer fabrication process features a batch wafer-to-glass electrostatic seal followed by a silicon etch, which eliminates handling of individual small diaphragm structures until die separation and final packaging. An addressable read-out interface circuit may be used with the sensor to provide a high-level output signal, and allows the sensor to be compatible for use on a multisite catheter having only two electrical leads.
    Type: Grant
    Filed: November 3, 1989
    Date of Patent: May 7, 1991
    Assignee: The Regents of the University of Michigan
    Inventors: Kensall D. Wise, Hin-Leung Chau
  • Patent number: 4881410
    Abstract: A capacitive pressure sensor suitable for making highly sensitive, low pressure measurements is disclosed. The sensor may be mounted into a 0.5 mm OD catheter suitable for multipoint pressure measurements from within the coronary artery of the heart. The sensor employs a transducer which consists of a rectangular bulk silicon micro-diaphragm several hundred microns on a side by two microns thick, surrounded by a supporting bulk silicon rim about 12 microns thick. Both the diaphragm and the rim are defined by a double diffusion etch-stop technique. The transducer fabrication process features a batch wafer-to-glass electrostatic seal followed by a silicon etch, which eliminates handling of individual small diaphragm structures until die separation and final packaging. An addressable read-out interface circuit may be used with the sensor to provide a high-level output signal, and allows the sensor to be compatible for use on a multisite catheter having only two electrical leads.
    Type: Grant
    Filed: May 4, 1988
    Date of Patent: November 21, 1989
    Assignee: The Regents of the University of Michigan
    Inventors: Kensall D. Wise, Hin-Leung Chau
  • Patent number: 4815472
    Abstract: A capacitive pressure sensor suitable for making highly sensitive, low pressure measurements is disclosed. The sensor may be mounted into a 0.5 mm OD catheter suitable for multipoint pressure measurements from within the coronary artery of the heart. The sensor employs a transducer which consists of a rectangular bulk silicon micro-diaphragm several hundred microns on a side by two microns thick, surrounded by a supporting bulk silicon rim about 12 microns thick. Both the diaphragm and the rim are defined by a double diffusion etch-stop technique. The transducer fabrication process features a batch wafer-to-glass electrostatic seal followed by a silicon etch, which eliminates handling of individual small diaphragm structures until die separation and final packaging. An addressable read-out interface circuit may be used with the sensor to provide a high-level output signal, and allows the sensor to be compatible for use on a multisite catheter having only two electrical leads.
    Type: Grant
    Filed: June 1, 1987
    Date of Patent: March 28, 1989
    Assignee: The Regents of the University of Michigan
    Inventors: Kensall D. Wise, Hin-Leung Chau