Patents by Inventor Hiram Bezerra

Hiram Bezerra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923067
    Abstract: In part, the invention relates to a method for sizing a stent for placement in a vessel. In one embodiment, the method includes the steps of: dividing the vessel into a plurality of segments, each segment being defined as the space between branches of the vessel; selecting a starting point that appears to have substantially no disease; defining the diameter at this point to be the maximum diameter; calculating the maximal diameter of the next adjacent segment according to a power law; measuring the actual diameter of the next adjacent segment; selecting either the calculated maximum diameter or the measured maximum diameter depending upon which diameter is larger; using the selected maximum diameter to find the maximum diameter of this next segment; iteratively proceeding until the entire length of the vessel is examined; and selecting a stent in response to the diameters of the end proximal and distal segments.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 5, 2024
    Assignee: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Hiram Bezerra, Christopher Petroff, Ajay Gopinath
  • Publication number: 20230223152
    Abstract: The present disclosure, in some embodiments, relates to a method of predicting stent expansion. The method includes accessing a pre-stent intravascular image of a blood vessel of a patient and segmenting the pre-stent intravascular image to identify a lumen and a calcification lesion. A plurality of features are extracted from one or more of the lumen and the calcification lesion. A regression model is applied to one or more of the plurality of features to determine a minimum stent expansion metric (mSEM). The mSEM indicating how much a stent will expand after implantation. The mSEM is used to generate a classification of the blood vessel as an under-expanded area or a well-expanded area.
    Type: Application
    Filed: January 5, 2023
    Publication date: July 13, 2023
    Inventors: David L. Wilson, Yazan Gharaibeh, Juhwan Lee, Sadeer Al-Kindi, Vladislav N. Zimin, Linxia Gu, Pengfei Dong, Hiram Bezerra
  • Patent number: 8750615
    Abstract: A system and related methods for automatic or semi-automatic segmentation and quantification of blood vessel structure and physiology, including segmentation and quantification of lumen, guide wire, vessel wall, calcified plaques, fibrous caps, macrophages, metallic and bioresorbable stents are described, and including visualization of results. Calcified plaque segmentation can be used to estimate the distribution of superficial calcification and inform strategies stenting. Volumetric segmentation and quantification of fibrous caps can provide more comprehensive information of the mechanisms behind plaque rupture. Quantification of macrophages can aid diagnosis and prediction of unstable plaque and associated acute coronary events. Automated detection and quantification of metallic and bioresorbable stents can greatly reduce the analysis time and facilitate timely decision making for intervention procedures.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: June 10, 2014
    Assignee: Case Western Reserve University
    Inventors: Andrew Rollins, David Wilson, Marco Costa, Hiram Bezerra, Zhao Wang
  • Publication number: 20120075638
    Abstract: A system and related methods for automatic or semi-automatic segmentation and quantification of blood vessel structure and physiology, including segmentation and quantification of lumen, guide wire, vessel wall, calcified plaques, fibrous caps, macrophages, metallic and bioresorbable stents are described, and including visualization of results. Calcified plaque segmentation can be used to estimate the distribution of superficial calcification and inform strategies stenting. Volumetric segmentation and quantification of fibrous caps can provide more comprehensive information of the mechanisms behind plaque rupture. Quantification of macrophages can aid diagnosis and prediction of unstable plaque and associated acute coronary events. Automated detection and quantification of metallic and bioresorbable stents can greatly reduce the analysis time and facilitate timely decision making for intervention procedures.
    Type: Application
    Filed: August 2, 2011
    Publication date: March 29, 2012
    Applicant: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Andrew Rollins, David Wilson, Marco Costa, Hiram Bezerra, Zhao Wang