Patents by Inventor Hiresh Gupta

Hiresh Gupta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11983946
    Abstract: In implementations of refining element associations for form structure extraction, a computing device implements a structure system to receive estimate data describing estimated associations of elements included in a form and a digital image depicting the form. An image patch is extracted from the digital image, and the image patch depicts a pair of elements of the elements included in the form. The structure system encodes an indication of whether the pair of elements have an association of the estimated associations. An indication is generated that the pair of elements have a particular association based at least partially on the encoded indication, bounding boxes of the pair of elements, and text depicted in the image patch.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: May 14, 2024
    Assignee: Adobe Inc.
    Inventors: Shripad Deshmukh, Milan Aggarwal, Mausoom Sarkar, Hiresh Gupta
  • Patent number: 11972466
    Abstract: A search system provides search results with images of products based on associations of primary products and secondary products from product image sets. The search system analyzes a product image set containing multiple images to determine a primary product and secondary products. Information associating the primary and secondary products are stored in a search index. When the search system receives a query image containing a search product, the search index is queried using the search product to identify search result images based on associations of products in the search index, and the result images are provided as a response to the query image.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: April 30, 2024
    Assignee: ADOBE INC
    Inventors: Jonas Dahl, Mausoom Sarkar, Hiresh Gupta, Balaji Krishnamurthy, Ayush Chopra, Abhishek Sinha
  • Patent number: 11734337
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media for generating tags for an object portrayed in a digital image based on predicted attributes of the object. For example, the disclosed systems can utilize interleaved neural network layers of alternating inception layers and dilated convolution layers to generate a localization feature vector. Based on the localization feature vector, the disclosed systems can generate attribute localization feature embeddings, for example, using some pooling layer such as a global average pooling layer. The disclosed systems can then apply the attribute localization feature embeddings to corresponding attribute group classifiers to generate tags based on predicted attributes. In particular, attribute group classifiers can predict attributes as associated with a query image (e.g., based on a scoring comparison with other potential attributes of an attribute group).
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: August 22, 2023
    Assignee: Adobe Inc.
    Inventors: Ayush Chopra, Mausoom Sarkar, Jonas Dahl, Hiresh Gupta, Balaji Krishnamurthy, Abhishek Sinha
  • Publication number: 20230134460
    Abstract: In implementations of refining element associations for form structure extraction, a computing device implements a structure system to receive estimate data describing estimated associations of elements included in a form and a digital image depicting the form. An image patch is extracted from the digital image, and the image patch depicts a pair of elements of the elements included in the form. The structure system encodes an indication of whether the pair of elements have an association of the estimated associations. An indication is generated that the pair of elements have a particular association based at least partially on the encoded indication, bounding boxes of the pair of elements, and text depicted in the image patch.
    Type: Application
    Filed: November 2, 2021
    Publication date: May 4, 2023
    Applicant: Adobe Inc.
    Inventors: Shripad Deshmukh, Milan Aggarwal, Mausoom Sarkar, Hiresh Gupta
  • Publication number: 20220309093
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media for generating tags for an object portrayed in a digital image based on predicted attributes of the object. For example, the disclosed systems can utilize interleaved neural network layers of alternating inception layers and dilated convolution layers to generate a localization feature vector. Based on the localization feature vector, the disclosed systems can generate attribute localization feature embeddings, for example, using some pooling layer such as a global average pooling layer. The disclosed systems can then apply the attribute localization feature embeddings to corresponding attribute group classifiers to generate tags based on predicted attributes. In particular, attribute group classifiers can predict attributes as associated with a query image (e.g., based on a scoring comparison with other potential attributes of an attribute group).
    Type: Application
    Filed: June 14, 2022
    Publication date: September 29, 2022
    Inventors: Ayush Chopra, Mausoom Sarkar, Jonas Dahl, Hiresh Gupta, Balaji Krishnamurthy, Abhishek Sinha
  • Patent number: 11386144
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media for generating tags for an object portrayed in a digital image based on predicted attributes of the object. For example, the disclosed systems can utilize interleaved neural network layers of alternating inception layers and dilated convolution layers to generate a localization feature vector. Based on the localization feature vector, the disclosed systems can generate attribute localization feature embeddings, for example, using some pooling layer such as a global average pooling layer. The disclosed systems can then apply the attribute localization feature embeddings to corresponding attribute group classifiers to generate tags based on predicted attributes. In particular, attribute group classifiers can predict attributes as associated with a query image (e.g., based on a scoring comparison with other potential attributes of an attribute group).
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: July 12, 2022
    Assignee: Adobe Inc.
    Inventors: Ayush Chopra, Mausoom Sarkar, Jonas Dahl, Hiresh Gupta, Balaji Krishnamurthy, Abhishek Sinha
  • Publication number: 20210073267
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media for generating tags for an object portrayed in a digital image based on predicted attributes of the object. For example, the disclosed systems can utilize interleaved neural network layers of alternating inception layers and dilated convolution layers to generate a localization feature vector. Based on the localization feature vector, the disclosed systems can generate attribute localization feature embeddings, for example, using some pooling layer such as a global average pooling layer. The disclosed systems can then apply the attribute localization feature embeddings to corresponding attribute group classifiers to generate tags based on predicted attributes. In particular, attribute group classifiers can predict attributes as associated with a query image (e.g., based on a scoring comparison with other potential attributes of an attribute group).
    Type: Application
    Filed: September 9, 2019
    Publication date: March 11, 2021
    Applicant: Adobe, Inc.
    Inventors: Ayush Chopra, Mausoom Sarkar, Jonas Dahl, Hiresh Gupta, Balaji Krishnamurthy, Abhishek Sinha
  • Publication number: 20210042625
    Abstract: Methods and systems are provided for facilitating the creation and utilization of a transformation function system capable of providing network agnostic performance improvement. The transformation function system receives a representation from a task neural network. The representation can be input into a composite function neural network of the transformation function system. A learned composite function can be generated using the composite function neural network. The composite function can be specifically constructed for the task neural network based on the input representation. The learned composite function can be applied to a feature embedding of the task neural network to transform the feature embedding. Transforming the feature embedding can optimize the output of the task neural network.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 11, 2021
    Inventors: Ayush CHOPRA, Abhishek SINHA, Hiresh GUPTA, Mausoom SARKAR, Kumar AYUSH, Balaji KRISHNAMURTHY
  • Publication number: 20200372560
    Abstract: A search system provides search results with images of products based on associations of primary products and secondary products from product image sets. The search system analyzes a product image set containing multiple images to determine a primary product and secondary products. Information associating the primary and secondary products are stored in a search index. When the search system receives a query image containing a search product, the search index is queried using the search product to identify search result images based on associations of products in the search index, and the result images are provided as a response to the query image.
    Type: Application
    Filed: May 20, 2019
    Publication date: November 26, 2020
    Inventors: Jonas Dahl, Mausoom Sarkar, Hiresh Gupta, Balaji Krishnamurthy, Ayush Chopra, Abhishek Sinha
  • Patent number: 10831818
    Abstract: Digital image search training techniques and machine-learning architectures are described. In one example, a query digital image is received by service provider system, which is then used to select at least one positive sample digital image, e.g., having a same product ID. A plurality of negative sample digital images is also selected by the service provider system based on the query digital image, e.g., having different product IDs. The at least one positive sample digital image and the plurality of negative samples are then aggregated by the service provider system into a single aggregated digital image. At least one neural network is then trained by the service provider system using a loss function based on a feature comparison between the query digital image and samples from the aggregated digital image in a single pass.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: November 10, 2020
    Assignee: Adobe Inc.
    Inventors: Mausoom Sarkar, Hiresh Gupta, Abhishek Sinha
  • Publication number: 20200134056
    Abstract: Digital image search training techniques and machine-learning architectures are described. In one example, a query digital image is received by service provider system, which is then used to select at least one positive sample digital image, e.g., having a same product ID. A plurality of negative sample digital images is also selected by the service provider system based on the query digital image, e.g., having different product IDs. The at least one positive sample digital image and the plurality of negative samples are then aggregated by the service provider system into a single aggregated digital image. At least one neural network is then trained by the service provider system using a loss function based on a feature comparison between the query digital image and samples from the aggregated digital image in a single pass.
    Type: Application
    Filed: October 31, 2018
    Publication date: April 30, 2020
    Applicant: Adobe Inc.
    Inventors: Mausoom Sarkar, Hiresh Gupta, Abhishek Sinha