Patents by Inventor Hiro Kinoshita

Hiro Kinoshita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10121794
    Abstract: An alternating stack of insulating layers and spacer material layers is formed over a semiconductor substrate. Memory openings are formed through the alternating stack. An optional silicon-containing epitaxial pedestal and a memory film are formed in each memory opening. After forming an opening through a bottom portion of the memory film within each memory opening, a germanium-containing semiconductor layer and a dielectric layer is formed in each memory opening. Employing the memory film and the dielectric layer as a crucible, a liquid phase epitaxy anneal is performed to convert the germanium-containing semiconductor layer into a germanium-containing epitaxial channel layer. A dielectric core and a drain region can be formed over the dielectric layer. The germanium-containing epitaxial channel layer is single crystalline, and can provide a higher charge carrier mobility than a polysilicon channel.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: November 6, 2018
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Marika Gunji-Yoneoka, Atsushi Suyama, Jayavel Pachamuthu, Tsuyoshi Hada, Daewung Kang, Murshed Chowdhury, James Kai, Hiro Kinoshita, Tomoyuki Obu, Luckshitha Suriyasena Liyanage
  • Patent number: 9985046
    Abstract: A linear mark extending perpendicular to a primary step direction of stepped terrace for a three-dimensional memory device can be employed as a reference feature for aligning a trimming material layer before initiating an etch-and-trim process sequence. The linear mark can be formed as a linear trench or a linear rail structure. The distance between a sidewall of each trimming material layer and the linear mark can be measured at multiple locations that are laterally spaced apart perpendicular to the primary step direction to provide statistically significant data points, which can be employed to provide an enhanced control of the staircase patterning process. Likewise, locations of patterned stepped surfaces can be measured at multiple locations to provide enhanced control of the locations of vertical steps in the stepped terrace.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: May 29, 2018
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Zhenyu Lu, Jixin Yu, Koji Miyata, Makoto Yoshida, Johann Alsmeier, Hiro Kinoshita, Daxin Mao
  • Publication number: 20170365613
    Abstract: An alternating stack of insulating layers and spacer material layers is formed over a semiconductor substrate. Memory openings are formed through the alternating stack. An optional silicon-containing epitaxial pedestal and a memory film are formed in each memory opening. After forming an opening through a bottom portion of the memory film within each memory opening, a germanium-containing semiconductor layer and a dielectric layer is formed in each memory opening. Employing the memory film and the dielectric layer as a crucible, a liquid phase epitaxy anneal is performed to convert the germanium-containing semiconductor layer into a germanium-containing epitaxial channel layer. A dielectric core and a drain region can be formed over the dielectric layer. The germanium-containing epitaxial channel layer is single crystalline, and can provide a higher charge carrier mobility than a polysilicon channel.
    Type: Application
    Filed: September 29, 2016
    Publication date: December 21, 2017
    Inventors: Marika GUNJI-YONEOKA, Atsushi SUYAMA, Jayavel PACHAMUTHU, Tsuyoshi HADA, Daewung KANG, Murshed CHOWDHURY, James KAI, Hiro KINOSHITA, Tomoyuki OBU, Luckshitha Suriyasena LIYANAGE
  • Publication number: 20170358594
    Abstract: A linear mark extending perpendicular to a primary step direction of stepped terrace for a three-dimensional memory device can be employed as a reference feature for aligning a trimming material layer before initiating an etch-and-trim process sequence. The linear mark can be formed as a linear trench or a linear rail structure. The distance between a sidewall of each trimming material layer and the linear mark can be measured at multiple locations that are laterally spaced apart perpendicular to the primary step direction to provide statistically significant data points, which can be employed to provide an enhanced control of the staircase patterning process. Likewise, locations of patterned stepped surfaces can be measured at multiple locations to provide enhanced control of the locations of vertical steps in the stepped terrace.
    Type: Application
    Filed: June 13, 2016
    Publication date: December 14, 2017
    Inventors: Zhenyu LU, Jixin YU, Koji MIYATA, Makoto YOSHIDA, Johann ALSMEIER, Hiro KINOSHITA, Daxin MAO
  • Patent number: 9716101
    Abstract: Techniques for forming 3D memory arrays are disclosed. Memory openings are filled with a sacrificial material, such as silicon or nitride. Afterwards, a replacement technique is used to remove nitride from an ONON stack and replace it with a conductive material such as tungsten. Afterwards, memory cell films are formed in the memory openings. The conductive material serves as control gates of the memory cells. The control gate will not suffer from corner rounding. ONON shrinkage is avoided, which will prevent control gate shrinkage. Block oxide between the charge storage region and control gate may be deposited after control gate replacement, so the uniformity is good. Block oxide may be deposited after control gate replacement, so TiN adjacent to control gates can be thicker to prevent fluorine attacking the insulator between adjacent control gates. Therefore, control gate to control gate shorting is prevented.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: July 25, 2017
    Assignee: SanDisk Technologies LLC
    Inventors: Zhenyu Lu, Hiro Kinoshita, Daxin Mao, Johann Alsmeier, Wenguang Shi, Yingda Dong, Henry Chien, Kensuke Yamaguchi, Xiaolong Hu
  • Publication number: 20160343718
    Abstract: Techniques for forming 3D memory arrays are disclosed. Memory openings are filled with a sacrificial material, such as silicon or nitride. Afterwards, a replacement technique is used to remove nitride from an ONON stack and replace it with a conductive material such as tungsten. Afterwards, memory cell films are formed in the memory openings. The conductive material serves as control gates of the memory cells. The control gate will not suffer from corner rounding. ONON shrinkage is avoided, which will prevent control gate shrinkage. Block oxide between the charge storage region and control gate may be deposited after control gate replacement, so the uniformity is good. Block oxide may be deposited after control gate replacement, so TiN adjacent to control gates can be thicker to prevent fluorine attacking the insulator between adjacent control gates. Therefore, control gate to control gate shorting is prevented.
    Type: Application
    Filed: October 30, 2015
    Publication date: November 24, 2016
    Applicant: SANDISK TECHNOLOGIES INC.
    Inventors: Zhenyu Lu, Hiro Kinoshita, Daxin Mao, Johann Alsmeier, Wenguang Shi, Yingda Dong, Henry Chien, Kensuke Yamaguchi, Xiaolong Hu
  • Patent number: 9455352
    Abstract: Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The memory cell contains a charge trapping dielectric stack, a poly gate, a pair of pocket implant regions, and a pair of bit lines. The bit line can be formed by an implant process at a higher energy level and/or a higher concentration of dopants without suffering device short channel roll off issues because spacers at bit line sidewalls constrain the implant in narrower implant regions.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: September 27, 2016
    Assignee: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Ning Cheng, Huaqiang Wu, Hiro Kinoshita, Jihwan Choi, Angela Hui
  • Patent number: 9245895
    Abstract: Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line openings containing a bit line dielectric between the memory cells. The memory cell contains a charge storage layer and a first poly gate. The bit line opening extends into the semiconductor substrate. By containing the bit line dielectric in the bit line openings that extend into the semiconductor substrate, the memory device can improve the electrical isolation between memory cells, thereby preventing and/or mitigating TPD.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: January 26, 2016
    Assignee: Cypress Semiconductor Corporation
    Inventors: Ning Cheng, Kuo-Tung Chang, Hiro Kinoshita, Chih-Yuh Yang, Lei Xue, Chungho Lee, Minghao Shen, Angela Hui, Huaqiang Wu
  • Patent number: 9224475
    Abstract: A NAND flash memory chip includes wide openings in an inter-poly dielectric layer through which gaps are later etched to define structures such as select gates. Such select gates are asymmetric, with inter-poly dielectric on a side adjacent to a memory cell and no inter-poly dielectric on a side away from a memory cell. Gaps etched through such openings may also define peripheral devices.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: December 29, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Jongsun Sel, Tuan Pham, Kazuya Tokunaga, Hiro Kinoshita
  • Publication number: 20140167138
    Abstract: Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The memory cell contains a charge trapping dielectric stack, a poly gate, a pair of pocket implant regions, and a pair of bit lines. The bit line can be formed by an implant process at a higher energy level and/or a higher concentration of dopants without suffering device short channel roll off issues because spacers at bit line sidewalls constrain the implant in narrower implant regions.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 19, 2014
    Applicant: SPANSION LLC
    Inventors: Ning Cheng, Huaqiang Wu, Hiro Kinoshita, Jihwan Choi, Angela Hui
  • Publication number: 20140054669
    Abstract: A NAND flash memory chip includes wide openings in an inter-poly dielectric layer through which gaps are later etched to define structures such as select gates. Such select gates are asymmetric, with inter-poly dielectric on a side adjacent to a memory cell and no inter-poly dielectric on a side away from a memory cell. Gaps etched through such openings may also define peripheral devices.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 27, 2014
    Inventors: Jongsun Sel, Tuan Pham, Kazuya Tokunaga, Hiro Kinoshita
  • Patent number: 8653581
    Abstract: Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The memory cell contains a charge trapping dielectric stack, a poly gate, a pair of pocket implant regions, and a pair of bit lines. The bit line can be formed by an implant process at a higher energy level and/or a higher concentration of dopants without suffering device short channel roll off issues because spacers at bit line sidewalls constrain the implant in narrower implant regions.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: February 18, 2014
    Assignee: Spansion LLC
    Inventors: Ning Cheng, Huaqiang Wu, Hiro Kinoshita, Jihwan Choi, Angela Hui
  • Patent number: 8330209
    Abstract: Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains a charge trapping dielectric stack, a poly gate, a pair of pocket implant regions, and a pair of bit lines. The bit line can be formed by an implant process at a higher energy level and/or a higher concentration of dopants without suffering device short channel roll off issues because spacers at bit line sidewalls constrain the implant in narrower implant regions.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: December 11, 2012
    Assignee: Spansion LLC
    Inventors: Ning Cheng, Huaqiang Wu, Hiro Kinoshita, Jihwan Choi
  • Publication number: 20110278660
    Abstract: Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line openings containing a bit line dielectric between the memory cells. The memory cell contains a charge storage layer and a first poly gate. The bit line opening extends into the semiconductor substrate. By containing the bit line dielectric in the bit line openings that extend into the semiconductor substrate, the memory device can improve the electrical isolation between memory cells, thereby preventing and/or mitigating TPD.
    Type: Application
    Filed: July 26, 2011
    Publication date: November 17, 2011
    Applicant: SPANSION LLC
    Inventors: Ning Cheng, K.T. Chang, Hiro Kinoshita, Chih-Yuh Yang, Lei Xue, Chungho Lee, Minghao Shen, Angela Hui, Huaqiang Wu
  • Patent number: 8012830
    Abstract: Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line openings containing a bit line dielectric between the memory cells. The memory cell contains a charge storage layer and a first poly gate. The bit line opening extends into the semiconductor substrate. By containing the bit line dielectric in the bit line openings that extend into the semiconductor substrate, the memory device can improve the electrical isolation between memory cells, thereby preventing and/or mitigating TPD.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: September 6, 2011
    Assignee: Spansion LLC
    Inventors: Ning Cheng, Kuo-Tung Chang, Hiro Kinoshita, Chih-Yuh Yang, Lei Xue, Chungho Lee, Minghao Shen, Angela Hui, Huaqiang Wu
  • Publication number: 20110169069
    Abstract: Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains a charge trapping dielectric stack, a poly gate, a pair of pocket implant regions, and a pair of bit lines. The bit line can be formed by an implant process at a higher energy level and/or a higher concentration of dopants without suffering device short channel roll off issues because spacers at bit line sidewalls constrain the implant in narrower implant regions.
    Type: Application
    Filed: March 23, 2011
    Publication date: July 14, 2011
    Applicant: SPANSION, LLC
    Inventors: Ning Cheng, Huaqiang Wu, Hiro Kinoshita, Jihwan Choi
  • Patent number: 7943983
    Abstract: Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The memory cell contains a pair of first bit lines and a pair of second bit lines. The first and second bit lines can be formed by an implant process using first and second spacers that have different lateral lengths from each other. The spacers can be used to offset the implants, thereby controlling the lateral lengths of the bit lines.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 17, 2011
    Assignee: Spansion LLC
    Inventors: Huaqiang Wu, Hiro Kinoshita, Ning Cheng, Arturo Ruiz, Jihwan Choi
  • Patent number: 7935596
    Abstract: Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains a charge trapping dielectric stack, a poly gate, a pair of pocket implant regions, and a pair of bit lines. The bit line can be formed by an implant process at a higher energy level and/or a higher concentration of dopants without suffering device short channel roll off issues because spacers at bit line sidewalls constrain the implant in narrower implant regions.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 3, 2011
    Assignee: Spansion LLC
    Inventors: Ning Cheng, Huaqiang Wu, Hiro Kinoshita, Jihwan Choi
  • Patent number: 7906807
    Abstract: Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains one or more charge storage nodes, a first poly gate, a pair of first bit lines, and a pair of second bit lines. The second bit line can be formed at a higher energy level, a higher concentration of dopants, or a combination thereof compared to an energy level and a concentration of dopants of the first bit line.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: March 15, 2011
    Assignee: Spansion LLC
    Inventors: Ning Cheng, Calvin Gabriel, Angela Hui, Lei Xue, Harpreet Kaur Sachar, Phillip Lawrence Jones, Hiro Kinoshita, Kuo-Tung Chang, Huaqiang Wu
  • Publication number: 20100264480
    Abstract: Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains one or more charge storage nodes, a first poly gate, a pair of first bit lines, and a pair of second bit lines. The second bit line can be formed at a higher energy level, a higher concentration of dopants, or a combination thereof compared to an energy level and a concentration of dopants of the first bit line.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Applicant: SPANSION LLC
    Inventors: Ning Cheng, Calvin Gabriel, Angela Hui, Lei Xue, Harpreet Kaur Sachar, Phillip Lawrence Jones, Hiro Kinoshita, K.T Chang, Huaqiang Wu