Patents by Inventor Hiroaki Arimura

Hiroaki Arimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11282837
    Abstract: A p-channel metal-oxide-semiconductor (pMOS) transistor including a gate stack which includes: a silicon oxide comprising dielectric interlayer on a substrate, wherein the dielectric interlayer has a thickness below 1 nm; a high-k dielectric layer having a higher dielectric constant compared to the dielectric interlayer; a first dipole-forming capping layer between the dielectric interlayer and the high-k dielectric layer and in direct contact with the dielectric interlayer, for shifting down a high-K bandgap of the high-k dielectric layer with relation to a valence band of the substrate, where the first dipole-forming capping layer has a thickness below 2 nm; at least one work function metal above the high-k dielectric layer. Advantageously, the pMOS transistor includes low negative bias temperature instability (NBTI) and therefore high reliability without the use of a reliability anneal which makes the pMOS transistor suitable for use as back end of line (BEOL) devices.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: March 22, 2022
    Assignee: IMEC vzw
    Inventors: Jacopo Franco, Hiroaki Arimura, Benjamin Kaczer
  • Patent number: 11075083
    Abstract: A method for forming a gate stack of a field-effect transistor includes depositing a Si capping layer on a Ge channel material (100). The method further includes depositing an oxide layer on the Si capping layer by a plasma enhanced deposition technique at a temperature less than or equal to 200° C., and a plasma power less than or equal to 100 W.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: July 27, 2021
    Assignee: IMEC vzw
    Inventors: Hiroaki Arimura, Antony Premkumar Peter, Hendrik F. W. Dekkers
  • Publication number: 20200203168
    Abstract: A method for forming a gate stack of a field-effect transistor includes depositing a Si capping layer on a Ge channel material (100). The method further includes depositing an oxide layer on the Si capping layer by a plasma enhanced deposition technique at a temperature less than or equal to 200° C., and a plasma power less than or equal to 100 W.
    Type: Application
    Filed: November 22, 2019
    Publication date: June 25, 2020
    Inventors: Hiroaki Arimura, Antony Premkumar Peter, Hendrik F.W. Dekkers
  • Patent number: 10680108
    Abstract: The disclosed technology generally relates to semiconductor devices, and more particularly to transistors comprising germanium (Ge) in the channel, and to methods of manufacturing thereof. In one aspect, a field-effect transistor (FET) comprises an active region comprising germanium (Ge) and a gate stack formed on the active region. The gate stack comprises a Si-comprising passivation layer formed on the active region, an interfacial dielectric layer comprising SiOx (x>0) formed on the passivation layer, a dielectric capping layer comprising an interface dipole-forming material formed on the interfacial dielectric layer, a high-k dielectric layer formed on the dielectric capping layer and a gate electrode layer formed on the high-k dielectric layer.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: June 9, 2020
    Assignee: IMEC vzw
    Inventor: Hiroaki Arimura
  • Publication number: 20200176446
    Abstract: A p-channel metal-oxide-semiconductor (pMOS) transistor including a gate stack which includes: a silicon oxide comprising dielectric interlayer on a substrate, wherein the dielectric interlayer has a thickness below lnm; a high-k dielectric layer having a higher dielectric constant compared to the dielectric interlayer; a first dipole-forming capping layer between the dielectric interlayer and the high-k dielectric layer and in direct contact with the dielectric interlayer, for shifting down a high-K bandgap of the high-k dielectric layer with relation to a valence band of the substrate, where the first dipole-forming capping layer has a thickness below 2nm; at least one work function metal above the high-k dielectric layer. Advantageously, the pMOS transistor includes low negative bias temperature instability (NBTI) and therefore high reliability without the use of a reliability anneal which makes the pMOS transistor suitable for use as back end of line (BEOL) devices.
    Type: Application
    Filed: November 19, 2019
    Publication date: June 4, 2020
    Inventors: Jacopo Franco, Hiroaki Arimura, Benjamin Kaczer
  • Publication number: 20170162686
    Abstract: The disclosed technology generally relates to semiconductor devices, and more particularly to transistors comprising germanium (Ge) in the channel, and to methods of manufacturing thereof. In one aspect, a field-effect transistor (FET) comprises an active region comprising germanium (Ge) and a gate stack formed on the active region. The gate stack comprises a Si-comprising passivation layer formed on the active region, an interfacial dielectric layer comprising SiO, (x>0) formed on the passivation layer, a dielectric capping layer comprising an interface dipole-forming material formed on the interfacial dielectric layer, a high-k dielectric layer formed on the dielectric capping layer and a gate electrode layer formed on the high-k dielectric layer.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 8, 2017
    Inventor: Hiroaki Arimura