Patents by Inventor Hiroaki Iriyama

Hiroaki Iriyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210319927
    Abstract: The present invention relates to a conductor having a substrate and a conductive coating film laminated on the substrate, wherein, the surface resistance value of the conductive coating film is 5×1010?/? or less, the Ra1 of the conductive coating film is 0.7 nm or less, the Ra2 value of the conductive coating film scanning probe microscopies 0.35 nm or less, and the conductive coating film is formed with a conductive composition containing a conductive polymer (A). In addition, the present invention relates to a conductive composition which contains a conductive polymer (A) and a surfactant (B), wherein the surfactant (B) contains a specific water-soluble polymer (C), and the content of a compound (D1) with an octanol-water partition coefficient (Log Pow) of 4 or more in the conductive composition is 0.001 mass % or less, relative to the total mass of the conductive composition.
    Type: Application
    Filed: June 23, 2021
    Publication date: October 14, 2021
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Hiroya FUKUDA, Osamu Numata, Hironobu Ikeda, Toshio Nagasaka, Shinji Saiki, Hiroaki Iriyama, Masashi Uzawa, Asako Kaneko
  • Patent number: 11145432
    Abstract: The present invention relates to a conductor having a substrate and a conductive coating film laminated on the substrate, wherein, the surface resistance value of the conductive coating film is 5×1010?/? or less, the Ra1 of the conductive coating film is 0.7 nm or less, the Ra2 value of the conductive coating film scanning probe microscopies 0.35 nm or less, and the conductive coating film is formed with a conductive composition containing a conductive polymer (A). In addition, the present invention relates to a conductive composition which contains a conductive polymer (A) and a surfactant (B), wherein the surfactant (B) contains a specific water-soluble polymer (C), and the content of a compound (D1) with an octanol-water partition coefficient (Log Pow) of 4 or more in the conductive composition is 0.001 mass % or less, relative to the total mass of the conductive composition.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: October 12, 2021
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hiroya Fukuda, Osamu Numata, Hironobu Ikeda, Toshio Nagasaka, Shinji Saiki, Hiroaki Iriyama, Masashi Uzawa, Asako Kaneko
  • Patent number: 10096395
    Abstract: The present invention relates to a conductor having a substrate and a conductive coating film laminated on the substrate, wherein, the surface resistance value of the conductive coating film is 5×1010?/? or less, the Ra1 of the conductive coating film is 0.7 nm or less, the Ra2 value of the conductive coating film scanning probe microscopies 0.35 nm or less, and the conductive coating film is formed with a conductive composition containing a conductive polymer (A). In addition, the present invention relates to a conductive composition which contains a conductive polymer (A) and a surfactant (B), wherein the surfactant (B) contains a specific water-soluble polymer (C), and the content of a compound (D1) with an octanol-water partition coefficient (Log Pow) of 4 or more in the conductive composition is 0.001 mass % or less, relative to the total mass of the conductive composition.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: October 9, 2018
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hiroya Fukuda, Osamu Numata, Hironobu Ikeda, Toshio Nagasaka, Shinji Saiki, Hiroaki Iriyama, Masashi Uzawa, Asako Kaneko
  • Publication number: 20180174698
    Abstract: The present invention relates to a conductor having a substrate and a conductive coating film laminated on the substrate, wherein, the surface resistance value of the conductive coating film is 5×1010?/? or less, the Ra1 of the conductive coating film is 0.7 nm or less, the Ra2 value of the conductive coating film scanning probe microscopies 0.35 nm or less, and the conductive coating film is formed with a conductive composition containing a conductive polymer (A). In addition, the present invention relates to a conductive composition which contains a conductive polymer (A) and a surfactant (B), wherein the surfactant (B) contains a specific water-soluble polymer (C), and the content of a compound (D1) with an octanol-water partition coefficient (Log Pow) of 4 or more in the conductive composition is 0.001 mass % or less, relative to the total mass of the conductive composition.
    Type: Application
    Filed: February 20, 2018
    Publication date: June 21, 2018
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Hiroya FUKUDA, Osamu NUMATA, Hironobu IKEDA, Toshio NAGASAKA, Shinji SAIKI, Hiroaki IRIYAMA, Masashi UZAWA, Asako KANEKO
  • Patent number: 9627144
    Abstract: A solid electrolytic capacitor, including: a solid electrolytic layer; and a dielectric layer on which the solid electrolytic layer is formed. The solid electrolytic layer is formed by applying and drying a conductive-polymer solution including a conductive polymer on the dielectric layer, and the dielectric layer is formed by oxidizing a surface of an anode metal. The conductive polymer has a volume average particle size of smaller than 26 nm. A stacked aluminum electrolytic capacitor including a test solid electrolytic layer and a test dielectric layer, the test solid electrolytic layer being formed by applying and drying the conductive-polymer solution on the test dielectric layer, the test dielectric layer being formed by oxidizing a surface of aluminum having an electrical capacitance of 95 ?F/cm2, has a rate of exhibited capacitance of no less than 70%.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: April 18, 2017
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Akira Yamazaki, Takeo Sando, Masashi Uzawa, Hiroaki Iriyama
  • Publication number: 20150132537
    Abstract: The present invention relates to a conductor having a substrate and a conductive coating film laminated on the substrate, wherein, the surface resistance value of the conductive coating film is 5×1010?/? or less, the Ra1 of the conductive coating film is 0.7 nm or less, the Ra2 value of the conductive coating film scanning probe microscopies 0.35 nm or less, and the conductive coating film is formed with a conductive composition containing a conductive polymer (A). In addition, the present invention relates to a conductive composition which contains a conductive polymer (A) and a surfactant (B), wherein the surfactant (B) contains a specific water-soluble polymer (C), and the content of a compound (D1) with an octanol-water partition coefficient (Log Pow) of 4 or more in the conductive composition is 0.001 mass % or less, relative to the total mass of the conductive composition.
    Type: Application
    Filed: July 24, 2013
    Publication date: May 14, 2015
    Applicant: Mitsubishi Rayon Co., Ltd.
    Inventors: Hiroya Fukuda, Osamu Numata, Hironobu Ikeda, Toshio Nagasaka, Shinji Saiki, Hiroaki Iriyama, Masashi Uzawa, Asako Kaneko
  • Publication number: 20140198428
    Abstract: A solid electrolytic capacitor in which a solid electrolytic layer is formed by applying and drying a conductive-polymer solution which contains a conductive polymer that satisfies following condition (A) and which meets following condition (B) to a dielectric layer formed by oxidizing the surface of an anode metal. Condition (A): Out of one or more peaks that appear when particle size distributions are measured by a dynamic light-scattering method using a conductive-polymer solution containing 1 mass % conductive polymer, the volume average particle size in the distribution that includes the peak of the smallest particle size is smaller than 26 nm.
    Type: Application
    Filed: August 17, 2011
    Publication date: July 17, 2014
    Applicant: Mitsubishi Rayon Co., Ltd
    Inventors: Akira Yamazaki, Takeo Sando, Masashi Uzawa, Hiroaki Iriyama
  • Publication number: 20130012655
    Abstract: The present invention provides a conductive polymer in which, when being formed into a coating film, foreign materials are difficult to be generated even the passage of time and a quality control method for a conductive polymer and has a repeating unit which is represented by the following general formula (1). The present invention also provides a quality control method for conductive polymers wherein conductive polymers with an area ratio (Y/X) of 0.60 or less are selected. In the formula R1 to R4 are each independently —H, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, an acidic group, a hydroxyl group, a nitro group, —F, —Cl, —Br or —I; and at least one of R1 to R4 is an acidic group or a salt thereof.
    Type: Application
    Filed: March 23, 2011
    Publication date: January 10, 2013
    Applicant: Mitsubishi Rayon Co., Ltd.
    Inventors: Takahiro Sakai, Tamae Takagi, Akira Yamakazi, Yasushi Horiuchi, Mamiko Takahara, Masaki Nakayama, Manabu Hoshino, Hiroaki Iriyama, Fumino Momose