Patents by Inventor Hiroaki Kouno

Hiroaki Kouno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070212888
    Abstract: Silicon substrate etching methods to keep surface unevenness of a structured surface formed by etching to within a fixed value. After an etching mask is formed on its surface, a silicon substrate S is mounted on a base 3 in an etching device 1. An etching gas (SF6) and a protective film forming gas (C4F8) are supplied to a chamber 2. The SF6 gas and the C4F8 gas supplied to the chamber are converted to plasma using a coil 16 to which high-frequency electrical power is applied. For example, by supplying a large amount of SF6 gas while high-frequency electrical power is applied to the base 3, dry etching primarily at the etching ground is advanced. Conversely, by supplying a large amount of C4F8 gas, protective film formation primarily to the etching structured surfaces is advanced. By repeating these steps, deep grooves with smooth structured surfaces can be formed.
    Type: Application
    Filed: May 21, 2007
    Publication date: September 13, 2007
    Applicant: SUMITOMO PRECISION PRODUCTS CO., LTD.
    Inventors: Kazuo Kasai, Yoshiyuki Nozawa, Hiroaki Kouno
  • Patent number: 7220678
    Abstract: A method for etching a silicon substrate is presented in which fast etching speed and etching structures with smooth and perpendicular wall surfaces are achieved. In the etching step, a constant electric power is applied to the silicon substrate to provide a bias potential. Using a mixture of SF6 gas and fluorocarbon gas, there is a step mainly for the progression of dry etching of the etching ground surface. Similarly, using a mixture gas, there is a step mainly for forming a protective layer on the structure surfaces which are perpendicular with respect to the etching ground surface. These two steps are repeated one after the other. In the step for dry etching, the mixture gas is 5–12 volume of fluorocarbon gas with respect to 100 volume SF6 gas. The mixture gas in the protective film formation step is a mixture of 2–5 volume of SF6 gas with respect to 100 volume fluorocarbon gas.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: May 22, 2007
    Assignee: Sumitomo Precision Products Co., Ltd.
    Inventors: Yoshiyuki Nozawa, Kazuo Kasai, Hiroaki Kouno
  • Patent number: 6939409
    Abstract: A cleaning method and an etching method for removing, by cleaning grease components and silicon micro pieces hard to remove, used for an apparatus and a carrier for manufacturing a semiconductor wafer or a semiconductor device. Matters to be removed are brought into contact with XeF2 gas produced by sublimation in a vacuum atmosphere to decompose and gasify the grease components and to remove silicon pieces by etching. If a trace of residual water is left in the vacuum atmosphere before the cleaning, the H2O reacts with XeF2, so that HF is produced. Therefore, for example, the native oxide SiO2 formed on the silicon pieces can be removed, and XeF2 can directly react with silicon, thereby enabling etching. The cleaning and etching speeds are extremely accelerated.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: September 6, 2005
    Assignee: Sumitomo Precision Products Co., Ltd.
    Inventors: Tokiko Kanayama, Hiroaki Kouno
  • Patent number: 6913653
    Abstract: A cleaning method for removing fats, oils, and silicon small particles, which are conventionally difficult to remove, adhering to devices and carriers used to manufacture a semiconductor wafer or a semiconductor device. An etching method is also disclosed. XeF2 gas produced by sublimation is made to contact with an object to be cleaned in a vacuum atmosphere so as to decompose and gasify the oils and fats and to remove silicon small particles by etching. Prior to the cleaning, when a trace amount of residual water is left in the vacuum atmosphere, H2O reacts with XeF2, and HF is produced. For example, a native oxide SiO2 formed on the surface of silicon small particles can be removed, and XeF2 directly reacts with silicon, therby enabling etching. The cleaning etching rates are extremely high.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: July 5, 2005
    Assignee: Sumitomo Precision Products Co., LTD
    Inventors: Tokiko Kanayama, Hiroaki Kouno
  • Publication number: 20050130436
    Abstract: A method for etching a silicon substrate is presented in which fast etching speed and etching structures with smooth and perpendicular wall surfaces are achieved. In the etching step, a constant electric power is applied to the silicon substrate to provide a bias potential. Using a mixture of SF6 gas and fluorocarbon gas, there is a step mainly for the progression of dry etching of the etching ground surface. Similarly, using a mixture gas, there is a step mainly for forming a protective layer on the structure surfaces which are perpendicular with respect to the etching ground surface. These two steps are repeated one after the other. In the step for dry etching, the mixture gas is 5-12 volume of fluorocarbon gas with respect to 100 volume SF6 gas. The mixture gas in the protective film formation step is a mixture of 2-5 volume of SF6 gas with respect to 100 volume fluorocarbon gas.
    Type: Application
    Filed: November 12, 2004
    Publication date: June 16, 2005
    Applicant: Sumitomo Precision Products Co., Ltd.
    Inventors: Yoshiyuki Nozawa, Kazuo Kasai, Hiroaki Kouno
  • Publication number: 20050109733
    Abstract: A cleaning method for removing fats, oils, and silicon small particles, which are conventionally difficult to remove, adhering to devices and carriers used to manufacture a semiconductor wafer or a semiconductor device. An etching method is also disclosed. XeF2 gas produced by sublimation is made to contact with an object to be cleaned in a vacuum atmosphere so as to decompose and gasify the oils and fats and to remove silicon small particles by etching. Prior to the cleaning, when a trace amount of residual water is left in the vacuum atmosphere, H2O reacts with XeF2, and HF is produced. For example, a native oxide SiO2 formed on the surface of silicon small particles can be removed, and XeF2 directly reacts with silicon, therby enabling etching. The cleaning etching rates are extremely high.
    Type: Application
    Filed: December 27, 2004
    Publication date: May 26, 2005
    Applicant: Sumitomo Precision Products Co., Ltd.
    Inventors: Tokiko Kanayama, Hiroaki Kouno
  • Publication number: 20040180544
    Abstract: The present invention relates to a method and device for etching a silicon substrate that can keep surface unevenness of a structured surface formed by etching to within a fixed value. After an etching mask is formed on its surface, a silicon substrate S is mounted on a base 3 in an etching device 1. An etching gas (SF6) and a protective film forming gas (C4F8) are supplied to a chamber 2. The SF6 gas and the C4F8 gas supplied to the chamber are converted to plasma using a coil 16 to which high-frequency electrical power is applied. For example, by supplying a large amount of SF6 gas while high-frequency electrical power is applied to the base 3, dry etching primarily at the etching grounds is advanced. Conversely, by supplying a large amount of C4F8 gas, protective film formation primarily to the etching structured surfaces is advanced. By repeating these steps, deep grooves with smooth structured surfaces can be formed.
    Type: Application
    Filed: March 29, 2004
    Publication date: September 16, 2004
    Applicant: Sumitomo Precision Products Co., Ltd.
    Inventors: Kazuo Kasai, Yoshiyuki Nozawa, Hiroaki Kouno
  • Publication number: 20040108296
    Abstract: A cleaning method and an etching method for removing, by cleaning grease components and silicon micro pieces hard to remove, used for an apparatus and a carrier for manufacturing a semiconductor wafer or a semiconductor device. Matters to be removed are brought into contact with XeF2 gas produced by sublimation in a vacuum atmosphere to decompose and gasify the grease components and to remove silicon pieces by etching. If a trace of residual water is left in the vacuum atmosphere before the cleaning, the H2O reacts with XeF2, so that HF is produced. Therefore, for example, the native oxide SiO2 formed on the silicon pieces can be removed, and XeF2 can directly react with silicon, thereby enabling etching. The cleaning and etching speeds are extremely accelerated.
    Type: Application
    Filed: July 23, 2003
    Publication date: June 10, 2004
    Inventors: Tokiko Kanayama, Hiroaki Kouno
  • Publication number: 20040069318
    Abstract: A cleaning method for removing fats, oils, and silicon small particles, which are conventionally difficult to remove, adhering to devices and carriers used to manufacture a semiconductor wafer or a semiconductor device. An etching method is also disclosed. XeF2 gas produced by sublimation is made to contact with an object to be cleaned in a vacuum atmosphere so as to decompose and gasify the oils and fats and to remove silicon small particles by etching. Prior to the cleaning, when a trace amount of residual water is left in the vacuum atmosphere, H2O reacts with XeF2, and HF is produced. For example, a native oxide SiO2 formed on the surface of silicon small particles can be removed, and XeF2 directly reacts with silicon, therby enabling etching. The cleaning etching rates are extremely high.
    Type: Application
    Filed: July 23, 2003
    Publication date: April 15, 2004
    Inventors: Tokiko Kanayama, Hiroaki Kouno
  • Patent number: 6008874
    Abstract: An active matrix liquid crystal display improves its contrast by suppressing irregularity of an alignment film caused by video lines thereby reducing reverse regions on a display electrode. The active matrix liquid crystal display has first and second opposite substrates, a video line, an active element and a display electrode which are directly or indirectly formed on the first substrate, and an alignment film which is formed on or above the video line, the active element and the display electrode. The alignment film is so formed that is surface is at an angle of inclination of not more than 10.5.degree. with respect to the display electrode surface between the video line and the display electrode.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: December 28, 1999
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hiroaki Kouno, Susumu Oima, Yasuo Segawa, Norio Tabuchi, Shouzou Ohura, Hiroki Hamada, Kiyoshi Yoneda
  • Patent number: 5880802
    Abstract: An active matrix liquid crystal display improves its contrast by suppressing irregularity of an alignment film caused by video lines thereby reducing reverse regions on a display electrode. The active matrix liquid crystal display has first and second opposite substrates, a video line, an active element and a display electrode which are directly or indirectly formed on the first substrate, and an alignment film which is formed on or above the video line, the active element and the display electrode. The alignment film is so formed that its surface is at an angle of inclination of not more than 10.5.degree. with respect to the display electrode surface between the video line and the display electrode.
    Type: Grant
    Filed: March 27, 1996
    Date of Patent: March 9, 1999
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hiroaki Kouno, Susumo Oima, Yasuo Segawa, Norio Tabuchi, Shouzou Ohura, Hiroki Hamada, Kiyoshi Yoneda
  • Patent number: 5818560
    Abstract: A liquid crystal display comprising a liquid crystal and a polyimide alignment layer for orienting the liquid crystal, wherein the polyimide alignment layer has a plurality of regions which are at different imidiation ratios, whereby liquid crystal portions corresponding to the respective regions are oriented at different pretilt angles which are responsive to the imidiation ratios.
    Type: Grant
    Filed: November 28, 1995
    Date of Patent: October 6, 1998
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hiroaki Kouno, Yoshihiro Furuta, Eiji Tamaoka, Kazuhiro Inoue