Patents by Inventor Hiroaki Kozawa

Hiroaki Kozawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10928367
    Abstract: A peak extraction method for extracting a true peak from a measured waveform, including acquiring a second derivative waveform; extracting a provisional peak on the basis of a maximum value and/or a minimum value of the second derivative waveform; determining the peak width of the provisional peak on the basis of a model peak function; computing, on the basis of the model peak function, a theoretical value for the height of the provisional peak using two points corresponding to the two ends of the peak width; computing, based on the second derivative waveform, an index value for a variation in the noise on the measured waveform; and computing an S/N ratio, which is a ratio of the peak height theoretical value and the index value, and extracting the provisional peak that is equal to or greater than a preset value as the true peak.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: February 23, 2021
    Assignee: SHIMADZU CORPORATION
    Inventor: Hiroaki Kozawa
  • Patent number: 10896831
    Abstract: A supply part includes a first partition, a second partition under the first partition, a third partition under the second partition, a first flow path between the first partition and the second partition allowing a first gas to be introduced therein, a second flow path between the second partition and the third partition allowing a second gas to be introduced therein, a first piping extending from the second partition to reach below the third partition and being communicated with the first flow path, a second piping extending from the third partition to reach below the third partition and being communicated with the second flow path, and a convex portion provided on an outer circumferential surface of the first piping or an inner circumferential surface of the second piping protruding from one of the outer circumferential surface and the inner circumferential surface toward the other one.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 19, 2021
    Assignees: NuFlare Technology, Inc., Showa Denko K.K., Central Research Institute of Electric Power Industry
    Inventors: Kunihiko Suzuki, Naohisa Ikeya, Keisuke Fukada, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Hiroaki Fujibayashi, Hideyuki Uehigashi, Masami Naito, Kazukuni Hara, Hirofumi Aoki, Takahiro Kozawa
  • Publication number: 20210013019
    Abstract: For an automatic adjustment of a detector voltage, a measurement of a standard sample is performed, in which a reflection voltage generator under the control of an autotuning controller applies, to a reflector, voltages which are different from those applied in a normal measurement and do not cause temporal conversion of ions. Ions having the same m/z simultaneously ejected from an ejector are dispersed in the temporal direction and reach a detector. Therefore, a plurality of low peaks corresponding to individual ions are observed on a profile spectrum. A peak-value data acquirer determines a wave-height value of each peak. A wave-height-value list creator creates a list of wave-height values. A detector voltage determiner searches for a detector voltage at which the median of the wave-height values in the wave-height-value list falls within a reference range.
    Type: Application
    Filed: April 26, 2018
    Publication date: January 14, 2021
    Applicant: SHIMADZU CORPORATION
    Inventors: Tomoyuki OSHIRO, Daisuke OKUMURA, Yuta MIYAZAKI, Hiroaki KOZAWA
  • Patent number: 10890562
    Abstract: Under the control of an analysis control unit (5), a mass spectrometer unit (2) performs a product-ion scan measurement for a target component in a target sample within a time range where the component is introduced. It also performs a scan measurement over an m/z range including the m/z of an ion originating from a standard component within the same segment of time. A mass correction information calculator (42) calculates mass correction information from measured and theoretical values of the m/z of the ion originating from the standard component observed on an MS spectrum obtained by the scan measurement. Using the mass correction information, a mass corrector (43) corrects the m/z of each ion peak originating from the target component observed on an MS/MS spectrum obtained by the product-ion scan measurement performed within the same cycle as the scan measurement concerned.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: January 12, 2021
    Assignee: SHIMADZU CORPORATION
    Inventors: Hideki Yamamoto, Tohru Shiohama, Hiroaki Kozawa, Atsushige Ikeda, Minoru Fujimoto
  • Publication number: 20200378933
    Abstract: The peak detection method of the present invention is a method of detecting peaks from data of a graph representing change in measured value relative to a measurement variable, comprising: a wavelet transform step (S2) in which wavelet transform is performed on the aforementioned data using a mother wavelet having a single maximum value to find an evaluation function having said mother wavelet's scale and translation as parameters; and a peak candidate information acquisition step (S3 through S5) in which locations of peak candidates in the aforementioned data are found based on the translation at which said evaluation function has its maximum value, and the width of said peak candidates is determined based on the scale corresponding to said peak candidates. Performing wavelet transform makes it possible to detect peak candidates regardless of the strength or weakness of peaks, etc.
    Type: Application
    Filed: May 30, 2016
    Publication date: December 3, 2020
    Applicant: SHIMADZU CORPORATION
    Inventors: Shinji KANAZAWA, Hiroaki KOZAWA
  • Patent number: 10739322
    Abstract: A device for detecting a peak end point including a peak end point position detecting unit for using, as a base point, a position on horizontal axis at which a local maximum value is obtained to detect, as a position on horizontal axis of a peak end point, a first point at which a value of the inflection point extraction waveform decreases to the relative threshold value in a direction farther from a position on horizontal axis corresponding to the peak top position, and detecting, as the peak end point, a point on the peak detection target waveform corresponding to the position on horizontal axis of the peak end point.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: August 11, 2020
    Assignee: SHIMADZU CORPORATION
    Inventor: Hiroaki Kozawa
  • Patent number: 10371676
    Abstract: A waveform data processing device 30 capable of accessing a storage device 40 for storing data on an observed waveform such as a chromatogram, information on a starting point and an ending point of a peak cluster consisting of a plurality of peaks close one another present on the observed waveform, and information on a position of each peak included in the peak cluster and a positive/negative direction of the each peak, includes baseline determination means for determining, based on the data and the information stored in the storage device 40, a shortest straight line or shortest line segments from the starting point of the peak cluster as a beginning point to the ending point of the peak cluster as a finishing point satisfying all following conditions, and determining the straight line or the line segments to be a baseline of the peak cluster: (1) in a section where positive peaks are contiguous, a baseline passes below the observed waveform, becoming a straight line or line segments convex downward; (2) in
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: August 6, 2019
    Assignee: SHIMADZU CORPORATION
    Inventor: Hiroaki Kozawa
  • Patent number: 10359404
    Abstract: In a method for estimating a noise level representing the magnitude of a noise component from measurement data, first waveform data composed of high frequency noise components extracted from assumed noise data are divided into segments so that each section where positive values successively occur or each section where negative values successively occur in the first waveform data is defined as one segment. A segment-width threshold is determined based on the distribution of the widths of the segments. Second waveform data composed of high frequency noise components extracted from measurement data are divided into segments in the same manner. Each segment having a width larger than the threshold is excluded from the segments in the second waveform data, to create a first segment group. The noise level is determined based on the heights or areas of the plurality of segments included in the first segment group.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: July 23, 2019
    Assignee: SHIMADZU CORPORATION
    Inventor: Hiroaki Kozawa
  • Publication number: 20190129917
    Abstract: A first reference line that is a regression line obtained from data within a predetermined range including a starting point of a peak detected from data of a graph showing changes in intensity with respect to a parameter, a second reference line that is a regression line obtained from data within a predetermined range including a ending point of the peak, and a third reference line connecting the starting and ending points, and one or more intermediate control points in a triangle defined by the first, second, and third reference lines are determined; and a Bezier curve between the starting point and the ending point is created to be determined to be a baseline of the peak, the Bezier curve being determined by control points of the starting point, the one or more intermediate control points, and the ending point in order on a parameter axis.
    Type: Application
    Filed: April 27, 2016
    Publication date: May 2, 2019
    Applicant: SHIMADZU CORPORATION
    Inventors: Shinji KANAZAWA, Hiroaki KOZAWA
  • Publication number: 20190064130
    Abstract: A method for detecting a peak in data of a chromatogram or a spectrum, includes: detecting multiple tentative peaks in the data on the basis of a predetermined criterion; determining an actual measurement value of a predetermined feature value indicating a size of a tentative peak from each of the detected multiple tentative peaks, the feature value; determining a smoothed curve on the basis of respective horizontal axis values and actual measurement values of the multiple tentative peaks; determining a reference value of the feature value with respect to each of the multiple tentative peaks from the smoothed curve; and detecting, of the multiple tentative peaks, a tentative peak whose actual measurement value is within a predetermined range from the corresponding reference value as a true peak. Only tentative peaks whose actual measurement value is within a predetermined range from the corresponding reference value as a true peak.
    Type: Application
    Filed: December 3, 2015
    Publication date: February 28, 2019
    Applicant: SHIMADZU CORPORATION
    Inventors: Shinji KANAZAWA, Hiroaki KOZAWA
  • Patent number: 10198630
    Abstract: For a signal waveform to be processed, the continuous wavelet transform is performed with various scale factors, and a wavelet coefficient at each point in time is calculated. On an image showing the strength of the wavelet coefficient with respect to the scale factor and time, ridge lines are detected, and based on these ridge lines, positive and negative peak candidates are extracted, after which an error in the position and width of the peak due to the influence of a neighboring peak is corrected. Subsequently, the degree of non-symmetry of the peak shape or other features are examined to remove false negative peaks due to negative peak artifacts. Subsequently, a true peak cluster, a false peak cluster resulting from the removal of high-frequency components of a high-frequency noise or other causes, and other kinds of peaks are identified, and the obtained result is used to remove false peaks.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: February 5, 2019
    Assignee: SHIMADZU CORPORATION
    Inventors: Akira Noda, Hiroaki Kozawa
  • Publication number: 20180284065
    Abstract: Under the control of an analysis control unit (5), a mass spectrometer unit (2) performs a product-ion scan measurement for a target component in a target sample within a time range where the component is introduced. It also performs a scan measurement over an m/z range including the m/z of an ion originating from a standard component within the same segment of time. A mass correction information calculator (42) calculates mass correction information from measured and theoretical values of the m/z of the ion originating from the standard component observed on an MS spectrum obtained by the scan measurement. Using the mass correction information, a mass corrector (43) corrects the m/z of each ion peak originating from the target component observed on an MS/MS spectrum obtained by the product-ion scan measurement performed within the same cycle as the scan measurement concerned.
    Type: Application
    Filed: October 7, 2015
    Publication date: October 4, 2018
    Applicant: SHIMADZU CORPORATION
    Inventors: Hideki YAMAMOTO, Tohru SHIOHAMA, Hiroaki KOZAWA, Atsushige IKEDA, Minoru FUJIMOTO
  • Publication number: 20180011067
    Abstract: In a method for estimating a noise level representing the magnitude of a noise component from measurement data, first waveform data composed of high frequency noise components extracted from assumed noise data are divided into segments so that each section where positive values successively occur or each section where negative values successively occur in the first waveform data is defined as one segment. A segment-width threshold is determined based on the distribution of the widths of the segments. Second waveform data composed of high frequency noise components extracted from measurement data are divided into segments in the same manner. Each segment having a width larger than the threshold is excluded from the segments in the second waveform data, to create a first segment group. The noise level is determined based on the heights or areas of the plurality of segments included in the first segment group.
    Type: Application
    Filed: January 26, 2015
    Publication date: January 11, 2018
    Applicant: SHIMADZU CORPORATION
    Inventor: Hiroaki KOZAWA
  • Publication number: 20180003683
    Abstract: A method includes: performing a time-frequency analysis on measurement data to obtain waveform data representing a temporal change in the intensity of each of a plurality of frequency components; dividing the waveform data of each of a plurality of predetermined frequencies into a plurality of segments so that each section where positive values successively occur and each section where negative values successively occur in a time-axis direction are defined as one segment; calculating the area of each of the segments to obtain segment values; creating, for the waveform data of each of the predetermined frequency components, a selected segment group by excluding a segment whose segment value exceeds a predetermined reference value from the segments in the waveform data; and determining a noise level of each of the predetermined frequency components based on the average value of the segment values of the segments included in the selected segment group.
    Type: Application
    Filed: February 16, 2015
    Publication date: January 4, 2018
    Applicant: SHIMADZU CORPORATION
    Inventor: Hiroaki KOZAWA
  • Publication number: 20170219542
    Abstract: A peak extraction method for extracting a true peak from a measured waveform, including acquiring a second derivative waveform; extracting a provisional peak on the basis of a maximum value and/or a minimum value of the second derivative waveform; determining the peak width of the provisional peak on the basis of a model peak function; computing, on the basis of the model peak function, a theoretical value for the height of the provisional peak using two points corresponding to the two ends of the peak width; computing, based on the second derivative waveform, an index value for a variation in the noise on the measured waveform; and computing an S/N ratio, which is a ratio of the peak height theoretical value and the index value, and extracting the provisional peak that is equal to or greater than a preset value as the true peak.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 3, 2017
    Applicant: SHIMADZU CORPORATION
    Inventor: Hiroaki KOZAWA
  • Patent number: 9595426
    Abstract: In estimating a structural formula of an unknown substance produced through partial structural change of an original substance having a known structure caused by metabolism or the like, structural change is considered in two stages, the elimination of a partial structure and the addition of another partial structure. First, an additional partial structure is collected as known information in addition to an MSn spectrum of the unknown substance and a structural formula of the original substance. A structural formula at the time when a partial structure is eliminated from the original substance is estimated, and a structural formula of each of product ions is estimated. The structural formula of the unknown substance is determined by estimating a structure that can produce the candidates for structural formulas of the product ions by dissociation.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: March 14, 2017
    Assignee: SHIMADZU CORPORATION
    Inventors: Hiroaki Kozawa, Shinichi Yamaguchi
  • Publication number: 20160238575
    Abstract: A device for detecting a peak end point including a peak end point position detecting unit for using, as a base point, a position on horizontal axis at which a local maximum value is obtained to detect, as a position on horizontal axis of a peak end point, a first point at which a value of the inflection point extraction waveform decreases to the relative threshold value in a direction farther from a position on horizontal axis corresponding to the peak top position, and detecting, as the peak end point, a point on the peak detection target waveform corresponding to the position on horizontal axis of the peak end point.
    Type: Application
    Filed: October 17, 2013
    Publication date: August 18, 2016
    Applicant: SHIMADZU CORPORATION
    Inventor: Hiroaki KOZAWA
  • Publication number: 20160238576
    Abstract: A waveform data processing device 30 capable of accessing a storage device 40 for storing data on an observed waveform such as a chromatogram, information on a starting point and an ending point of a peak cluster consisting of a plurality of peaks close one another present on the observed waveform, and information on a position of each peak included in the peak cluster and a positive/negative direction of the each peak, includes baseline determination means for determining, based on the data and the information stored in the storage device 40, a shortest straight line or shortest line segments from the starting point of the peak cluster as a beginning point to the ending point of the peak cluster as a finishing point satisfying all following conditions, and determining the straight line or the line segments to be a baseline of the peak cluster: (1) in a section where positive peaks are contiguous, a baseline passes below the observed waveform, becoming a straight line or line segments convex downward; (2) in
    Type: Application
    Filed: October 4, 2013
    Publication date: August 18, 2016
    Applicant: SHIMADZU CORPORATION
    Inventor: Hiroaki KOZAWA
  • Publication number: 20160224830
    Abstract: For a signal waveform to be processed, the continuous wavelet transform is performed with various scale factors, and a wavelet coefficient at each point in time is calculated. On an image showing the strength of the wavelet coefficient with respect to the scale factor and time, ridge lines are detected, and based on these ridge lines, positive and negative peak candidates are extracted, after which an error in the position and width of the peak due to the influence of a neighboring peak is corrected. Subsequently, the degree of non-symmetry of the peak shape or other features are examined to remove false negative peaks due to negative peak artifacts. Subsequently, a true peak cluster, a false peak cluster resulting from the removal of high-frequency components of a high-frequency noise or other causes, and other kinds of peaks are identified, and the obtained result is used to remove false peaks.
    Type: Application
    Filed: September 9, 2013
    Publication date: August 4, 2016
    Applicant: SHIMADZU CORPORATION
    Inventors: Akira NODA, Hiroaki KOZAWA
  • Publication number: 20140249766
    Abstract: In estimating a structural formula of an unknown substance produced through partial structural change of an original substance having a known structure caused by metabolism or the like, structural change is considered in two stages, the elimination of a partial structure and the addition of another partial structure. First, an additional partial structure is collected as known information in addition to an MSn spectrum of the unknown substance and a structural formula of the original substance. A structural formula at the time when a partial structure is eliminated from the original substance is estimated, and a structural formula of each of product ions is estimated. The structural formula of the unknown substance is determined by estimating a structure that can produce the candidates for structural formulas of the product ions by dissociation.
    Type: Application
    Filed: October 7, 2011
    Publication date: September 4, 2014
    Applicant: SHIMADZU CORPORATION
    Inventors: Hiroaki Kozawa, Shinichi Yamaguchi