Patents by Inventor Hiroaki Niimi

Hiroaki Niimi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240047342
    Abstract: A semiconductor device includes a field-effect transistor (FET) having a source/drain (S/D) structure and an interconnect structure in contact with the S/D structure. The interconnect structure has a barrier film at a surface of the interconnect structure separating the interconnect structure from materials surrounding the interconnect structure. A first portion of the barrier film covers a first interface between the interconnect structure and the S/ID structure. A second portion of the barrier film covers a second interface between the interconnect structure and dielectric materials adjacent to the interconnect structure. The first portion of the barrier film is thicker than the second portion of the barrier.
    Type: Application
    Filed: August 8, 2022
    Publication date: February 8, 2024
    Applicant: Tokyo Electron Limited
    Inventors: Jeffrey SMITH, Hiroaki NIIMI, Kandabara TAPILY, Daniel CHANEMOUGAME, Lars LIEBMANN
  • Publication number: 20230274932
    Abstract: A method for processing a substrate includes treating the substrate with a small molecular inhibitor (SMI), the substrate including a recess formed in a dielectric layer and a first metal layer in the recess, the SMI covering a surface of the first metal layer. The method further includes, after treating the substrate with the SMI, treating the substrate with a large molecular inhibitor (LMI), the LMI covering sidewalls of the dielectric layer in the recess. The method further includes heating the substrate to remove the SMI from the first metal layer and to expose the first metal layer in the recess, where the LMI remains on the sidewalls after removing the SMI from the first metal layer. The method further includes depositing a second metal over the first metal layer in the recess, where the LMI covering the sidewalls prevents deposition of the second metal on the dielectric layer.
    Type: Application
    Filed: January 18, 2023
    Publication date: August 31, 2023
    Inventors: Kai-Hung Yu, Robert D. Clark, Ryota Yonezawa, Hiroaki Niimi, Hidenao Suzuki, Kandabara Tapily, Takahiro Miyahara, Cory Wajda
  • Publication number: 20230051311
    Abstract: A method of forming a metal superlattice structure includes depositing, on a substrate, a layer of a first metal with face-centered-cubic (fcc) crystal structure. The method further includes depositing a layer of ruthenium (Ru) metal with fcc crystal structure on the layer of the first metal. The layer of the first metal may cause the layer of ruthenium metal to have fcc crystal structure.
    Type: Application
    Filed: August 9, 2022
    Publication date: February 16, 2023
    Inventors: Hiroaki Niimi, Gerrit Leusink, Hiroki Maehara, Einstein Noel Abarra, Naoki Watanabe
  • Patent number: 11562906
    Abstract: Techniques for forming a metastable phosphorous P-doped silicon Si source drain contacts are provided. In one aspect, a method for forming n-type source and drain contacts includes the steps of: forming a transistor on a substrate; depositing a dielectric over the transistor; forming contact trenches in the dielectric that extend down to source and drain regions of the transistor; forming an epitaxial material in the contact trenches on the source and drain regions; implanting P into the epitaxial material to form an amorphous P-doped layer; and annealing the amorphous P-doped layer under conditions sufficient to form a crystalline P-doped layer having a homogenous phosphorous concentration that is greater than about 1.5×1021 atoms per cubic centimeter (at./cm3). Transistor devices are also provided utilizing the present P-doped Si source and drain contacts.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: January 24, 2023
    Assignees: International Business Machines Corporation, GLOBALFOUNDRIES Inc.
    Inventors: Oleg Gluschenkov, Zuoguang Liu, Shogo Mochizuki, Hiroaki Niimi, Tenko Yamashita, Chun-Chen Yeh
  • Publication number: 20220344162
    Abstract: A method for manufacturing a FET semiconductor structure includes providing a substrate comprising at least one source/drain contact of at least one FET, the at least one source/drain contact formed adjacent to a dummy gate of the at least one FET. A TiSi2 film with C54 structure is selectively deposited directly on and fully covering the at least one source/drain contact relative to a vertical sidewall of a gate spacer between the at least one source/drain contact and the dummy gate. The dummy gate is replaced with a replacement metal gate.
    Type: Application
    Filed: April 14, 2022
    Publication date: October 27, 2022
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yun HAN, Alok RANJAN, Peter VENTZEK, Andrew METZ, Hiroaki NIIMI
  • Publication number: 20220310812
    Abstract: A semiconductor device includes a first raised feature in a NFET region on a substrate, a first n-type doped epitaxial semiconductor material grown on the first raised feature, the first n-type doped epitaxial material having a first upward facing surface and a first downward facing surface, a first contact metal on the first downward facing surface, and a second contact metal on the first upward facing surface. The device further includes a second raised feature in a PFET region on the substrate, a second p-type doped epitaxial semiconductor material grown on the second raised feature, the second p-type doped epitaxial material having a second upward facing surface and a second downward facing surface, a third contact metal on the second downward facing surface, and a fourth contact metal on the second upward facing surface, wherein the fourth contact metal is different from the second contact metal.
    Type: Application
    Filed: June 15, 2022
    Publication date: September 29, 2022
    Inventors: Hiroaki Niimi, Kandabara N Tapily, Takahiro Hakamata
  • Publication number: 20220301930
    Abstract: A method for filling recessed features with a low-resistivity metal. The method includes providing a patterned substrate containing a recessed feature formed in a first layer and a second layer that is exposed in the recessed feature, forming a nucleation enhancement layer on a sidewall of the first layer in the recessed feature and depositing a metal layer in the recessed feature by vapor phase deposition, where the metal layer is deposited on the second layer and on the nucleation enhancement layer. An initial metal layer may be selectively formed on the second layer in the recessed feature before forming the nucleation enhancement layer.
    Type: Application
    Filed: March 7, 2022
    Publication date: September 22, 2022
    Inventors: Kai-Hung Yu, Shihsheng Chang, Ying Trickett, Eric Chih-Fang Liu, Yun Han, Henan Zhang, Cory Wajda, Robert D. Clark, Gerrit J. Leusink, Gyanaranjan Pattanaik, Hiroaki Niimi
  • Patent number: 11374101
    Abstract: A semiconductor device includes a first raised feature in a NFET region on a substrate, a first n-type doped epitaxial semiconductor material grown on the first raised feature, the first n-type doped epitaxial material having a first upward facing surface and a first downward facing surface, a first contact metal on the first downward facing surface, and a second contact metal on the first upward facing surface. The device further includes a second raised feature in a PFET region on the substrate, a second p-type doped epitaxial semiconductor material grown on the second raised feature, the second p-type doped epitaxial material having a second upward facing surface and a second downward facing surface, a third contact metal on the second downward facing surface, and a fourth contact metal on the second upward facing surface, wherein the fourth contact metal is different from the second contact metal.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: June 28, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Hiroaki Niimi, Kandabara N Tapily, Takahiro Hakamata
  • Publication number: 20220109066
    Abstract: Low-resistivity dual silicide contacts for aggressively scaled semiconductor devices. A semiconductor device includes a first raised feature in a n-type channel field effect transistor (NFET) region on a substrate, a first n-type doped epitaxial semiconductor material wrapped around the first raised feature, a first metal silicide contact layer wrapped around the first n-type doped epitaxial semiconductor material, a second raised feature in p-type channel field effect transistor (PFET) region on the substrate, a second p-type epitaxial semiconductor material wrapped around the second raised feature, and a second metal silicide contact layer wrapped around the second p-type doped epitaxial semiconductor material. The first metal silicide contact layer can include a titanium silicide and the second metal silicide contact layer can include a ruthenium silicide.
    Type: Application
    Filed: December 14, 2021
    Publication date: April 7, 2022
    Inventor: Hiroaki Niimi
  • Patent number: 11264274
    Abstract: A first source/drain (S/D) structure of a first transistor is formed on a substrate and positioned at a first end of a first channel structure of the first transistor. A first substitute silicide layer is deposited on a surface of the first S/D structure and made of a first dielectric. A second dielectric is formed to cover the first substitute silicide layer and the first S/D structure. A first interconnect opening is formed subsequently in the second dielectric to uncover the first substitute silicide layer. The first interconnect opening is filled with a first substitute interconnect layer, where the first substitute interconnect layer is made of a third dielectric. Further, a thermal processing of the substrate is executed. The first substitute interconnect layer and the first substitute silicide layer are removed. A first silicide layer is formed on the surfaces of the first S/D structure.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: March 1, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Jeffrey Smith, Hiroaki Niimi, Jodi Grzeskowiak, Daniel Chanemougame, Lars Liebmann, Kandabara Tapily, Subhadeep Kal, Anton J. deVilliers
  • Publication number: 20220051905
    Abstract: Techniques herein provide thermal processing solutions applicable to both existing FINFET applications, including wrap-around contacts, as well as 3D architectures such as transistor-on-transistor and gate-on-gate monolithic or heterogeneous CFET. Techniques include heating or annealing a first target material without heating or affecting performance of a second material or other materials. Techniques include using a first heating process to heat a substrate and materials provided thereon to a first temperature, and then using a wavelength/frequency tunable second heating process to increase temperature of the target material without increasing temperature of the second material or other materials.
    Type: Application
    Filed: March 9, 2021
    Publication date: February 17, 2022
    Applicant: Tokyo Electron Limited
    Inventors: Jeffrey SMITH, Hiroaki NIIMI, Daniel CHANEMOUGAME, Lars LIEBMANN, H. Jim FULFORD, Mark I. GARDNER, Kandabara TAPILY, Anton J. DEVILLIERS
  • Patent number: 11201089
    Abstract: Embodiments of the present invention are directed to techniques for forming a robust low-k bottom spacer for a vertical field effect transistor (VFET) using a spacer first, shallow trench isolation last process integration. In a non-limiting embodiment of the invention, a semiconductor fin is formed over a substrate. A first dielectric liner is formed on a sidewall of the semiconductor fin. A bottom spacer is formed over the substrate and on a sidewall of the first dielectric liner. The first dielectric liner is positioned between the semiconductor fin and the bottom spacer. Portions of the bottom spacer are removed to define a shallow trench isolation region.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: December 14, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hiroaki Niimi, Pietro Montanini, Kangguo Cheng
  • Patent number: 11171060
    Abstract: A semiconductor device and a method of forming a semiconductor device. The semiconductor device includes a first raised feature in a n-type channel field effect transistor (NFET) region on a substrate, a first doped epitaxial semiconductor material grown on the first raised feature, a first metal contact on the first doped epitaxial semiconductor material, a first metal nitride on the first metal contact, and a first ruthenium (Ru) metal plug on the first metal nitride. The device further includes a second raised feature in a p-type channel field effect transistor (PFET) region on the substrate, a second doped epitaxial semiconductor material grown on the second raised feature, a second metal contact on the second doped epitaxial semiconductor material, a second metal nitride on the second metal contact, and a second ruthenium (Ru) metal plug on the second metal nitride.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: November 9, 2021
    Assignee: Tokyo Electron Limited
    Inventors: Hiroaki Niimi, Gyanaranjan Pattanaik
  • Publication number: 20210225711
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Application
    Filed: March 16, 2021
    Publication date: July 22, 2021
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Patent number: 10978353
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: April 13, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Publication number: 20210098306
    Abstract: A first source/drain (S/D) structure of a first transistor is formed on a substrate and positioned at a first end of a first channel structure of the first transistor. A first substitute silicide layer is deposited on a surface of the first S/D structure and made of a first dielectric. A second dielectric is formed to cover the first substitute silicide layer and the first S/D structure. A first interconnect opening is formed subsequently in the second dielectric to uncover the first substitute silicide layer. The first interconnect opening is filled with a first substitute interconnect layer, where the first substitute interconnect layer is made of a third dielectric. Further, a thermal processing of the substrate is executed. The first substitute interconnect layer and the first substitute silicide layer are removed. A first silicide layer is formed on the surfaces of the first S/D structure.
    Type: Application
    Filed: September 2, 2020
    Publication date: April 1, 2021
    Applicant: Tokyo Electron Limited
    Inventors: Jeffrey Smith, Hiroaki Niimi, Jodi Grzeskowiak, Daniel Chanemougame, Lars Liebmann, Kandabara Tapily, Subhadeep Kal, Anton J. deVilliers
  • Patent number: 10943992
    Abstract: An integrated semiconductor device having a substrate and a vertical field-effect transistor (FET) disposed on the substrate. The vertical FET includes a fin and a bottom spacer. The bottom spacer further includes a first spacer layer and a second spacer layer formed on top of the first spacer layer. The bottom spacer provides for a symmetrical straight alignment at a bottom junction between the bottom spacer and the fin.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: March 9, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Christopher J. Waskiewicz, Michael P. Belyansky, Brent Alan Anderson, Muthumanickam Sankarapandian, Puneet Suvarna, Hiroaki Niimi
  • Patent number: 10879133
    Abstract: A complementary metal-oxide-semiconductor (CMOS) integrated circuit structure, and method of fabricating the same according to a replacement metal gate process. P-channel and n-channel MOS transistors are formed with high-k gate dielectric material that differ from one another in composition or thickness, and with interface dielectric material that differ from one another in composition or thickness. The described replacement gate process enables construction so that neither of the p-channel or n-channel transistor gate structures includes the metal gate material from the other transistor, thus facilitating reliable filling of the gate structures with fill metal.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: December 29, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hiroaki Niimi, Seung-Chul Song
  • Patent number: 10854510
    Abstract: Aspects of the present invention relate to approaches for forming a narrow source-drain contact in a semiconductor device. A contact trench can be etched to a source-drain region of the semiconductor device. A titanium liner can be deposited in this contact trench such that it covers substantially an entirety of the bottom and walls of the contact trench. An x-metal layer can be deposited over the titanium liner on the bottom of the contact trench. A titanium nitride liner can then be formed on the walls of the contact trench. The x-metal layer prevents the nitriding of the titanium liner on the bottom of the contact trench during the formation of the nitride liner.
    Type: Grant
    Filed: August 26, 2017
    Date of Patent: December 1, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Min Gyu Sung, Kwanyong Lim, Hiroaki Niimi
  • Publication number: 20200357894
    Abstract: An integrated semiconductor device having a substrate and a vertical field-effect transistor (FET) disposed on the substrate. The vertical FET includes a fin and a bottom spacer. The bottom spacer further includes a first spacer layer and a second spacer layer formed on top of the first spacer layer. The bottom spacer provides for a symmetrical straight alignment at a bottom junction between the bottom spacer and the fin.
    Type: Application
    Filed: May 9, 2019
    Publication date: November 12, 2020
    Inventors: Kangguo Cheng, Christopher J. Waskiewicz, Michael P. Belyansky, Brent Alan Anderson, Muthumanickam Sankarapandian, Puneet Suvarna, Hiroaki Niimi