Patents by Inventor Hiroatsu TODORIKI

Hiroatsu TODORIKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160204440
    Abstract: A graphene oxide used as a raw material of a conductive additive for forming an active material layer with high electron conductivity with a small amount of a conductive additive is provided. A positive electrode for a nonaqueous secondary battery using the graphene oxide as a conductive additive is provided. The graphene oxide is used as a raw material of a conductive additive in a positive electrode for a nonaqueous secondary battery and, in the graphene oxide, the weight ratio of oxygen to carbon is greater than or equal to 0.405.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Hiroatsu TODORIKI, Mikio YUKAWA, Yumiko SAITO, Masaki YAMAKAJI, Rika YATABE, Tatsuya IKENUMA
  • Patent number: 9373834
    Abstract: To provide a positive electrode for a lithium-ion secondary battery, which is highly filled with a positive electrode active material and has a high-density positive electrode active material layer. To provide a lithium-ion secondary battery having high capacity and improved cycle characteristics with use of the positive electrode. After graphene oxide is dispersed in a dispersion medium, a positive electrode active material is added and mixed to form a mixture. A binder is added to the mixture and mixed to form a positive electrode paste. The positive electrode paste is applied to a positive electrode current collector and the dispersion medium contained in the positive electrode paste is evaporated, and then, the graphene oxide is reduced, so that a positive electrode active material layer containing graphene is formed over the positive electrode current collector.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: June 21, 2016
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masaki Yamakaji, Rika Yatabe, Hiroatsu Todoriki
  • Patent number: 9343241
    Abstract: A power storage device with high output is provided, in which the specific surface area is increased while keeping the easy-to-handle particle size of its active material. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte. The negative electrode active material layer includes a negative electrode active material having a plurality of graphite particles. Each of the graphite particles consists of graphite layers that are overlapped with each other with a gap of 1 nm to 10 nm therebetween. It is preferable that the grain diameter of the particle be 1 ?m to 50 ?m. Further, the specific surface area of the particles is 20 m2/g to 200 m2/g.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: May 17, 2016
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junpei Momo, Hiroatsu Todoriki, Kuniharu Nomoto
  • Patent number: 9293770
    Abstract: A graphene oxide used as a raw material of a conductive additive for forming an active material layer with high electron conductivity with a small amount of a conductive additive is provided. A positive electrode for a nonaqueous secondary battery using the graphene oxide as a conductive additive is provided. The graphene oxide is used as a raw material of a conductive additive in a positive electrode for a nonaqueous secondary battery and, in the graphene oxide, the atomic ratio of oxygen to carbon is greater than or equal to 0.405.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 22, 2016
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hiroatsu Todoriki, Mikio Yukawa, Yumiko Saito, Masaki Yamakaji, Rika Yatabe, Tatsuya Ikenuma
  • Patent number: 9275798
    Abstract: A thin energy storage device having high capacity is obtained. An energy storage device having high output is obtained. A current collector and an active material layer are formed in the same manufacturing step. The number of manufacturing steps of an energy storage device is reduced. The manufacturing cost of an energy storage device is suppressed. One embodiment of the present invention relates to a method for manufacturing of an electric double layer capacitor, or a lithium ion capacitor, which includes porous metal electrodes formed by removing a metal from an alloy foil, and an electrolyte provided therebetween. A surface area per volume of the porous structure is greater than or equal to 100 m2/cm3.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: March 1, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junpei Momo, Yumiko Saito, Rie Matsubara, Hiroatsu Todoriki
  • Patent number: 9085813
    Abstract: An object is to recover metallic lithium from metallic lithium on which an unnecessary substance is formed without discarding the metallic lithium on which an unnecessary substance is formed. The present invention relates to a method for recovering metallic lithium in such a manner that metallic lithium on which a substance is formed is reacted with nitrogen to form lithium nitride; the lithium nitride is reacted with carbon dioxide to form lithium carbonate; the lithium carbonate is reacted with hydrochloric acid to form lithium chloride; the lithium chloride and potassium chloride are melted; and electrolysis is applied to the melted lithium chloride and potassium chloride.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: July 21, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yumiko Saito, Junpei Momo, Rie Matsubara, Hiroatsu Todoriki
  • Publication number: 20150200419
    Abstract: To provide a carbon-based negative electrode material which can be used with an electrolyte containing PC as a main ingredient, a carbon-based negative electrode material having a graphene layer structure is crystalline and has pores. That is, the crystal structure of the carbon-based negative electrode material is distorted more significantly than that of graphite. Accordingly, the carbon-based negative electrode material has a larger interlayer distance between graphenes than graphite. It has been shown that such a negative electrode material can be used for a secondary battery which contains an electrolyte containing PC as a main ingredient.
    Type: Application
    Filed: March 26, 2015
    Publication date: July 16, 2015
    Inventors: Nobuhiro INOUE, Junpei MOMO, Hiroatsu TODORIKI, Teppei OGUNI
  • Publication number: 20150140429
    Abstract: A power storage device a positive electrode including a positive electrode active material layer and a negative electrode including a negative electrode active material layer. The positive electrode active material layer includes a plurality of particles of x[Li2MnO3]-(1?x)[LiCo1/3Mn1/3Ni1/3O2] (obtained by assigning 0.5 to x, for example) which is a positive electrode active material, and multilayer graphene with which the plurality of particles of the positive electrode active material are at least partly connected to each other. In the multilayer graphene, a plurality of graphenes are stacked in a layered manner. The graphene contains a six-membered ring composed of carbon atoms, a poly-membered ring which is a seven or more-membered ring composed of carbon atoms, and an oxygen atom bonded to one or more of the carbon atoms in the six-membered ring and the poly-membered ring, which is a seven or more-membered ring.
    Type: Application
    Filed: January 26, 2015
    Publication date: May 21, 2015
    Inventors: Takahiro KAWAKAMI, Hiroatsu TODORIKI, Teppei OGUNI, Takeshi OSADA, Shunpei YAMAZAKI
  • Patent number: 8993156
    Abstract: To provide a carbon-based negative electrode material which can be used with an electrolyte containing PC as a main ingredient, a carbon-based negative electrode material having a graphene layer structure is crystalline and has pores. That is, the crystal structure of the carbon-based negative electrode material is distorted more significantly than that of graphite. Accordingly, the carbon-based negative electrode material has a larger interlayer distance between graphenes than graphite. It has been shown that such a negative electrode material can be used for a secondary battery which contains an electrolyte containing PC as a main ingredient.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: March 31, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Nobuhiro Inoue, Junpei Momo, Hiroatsu Todoriki, Teppei Oguni
  • Publication number: 20150064565
    Abstract: The formation method of graphene includes the steps of forming a layer including graphene oxide over a first conductive layer; and supplying a potential at which the reduction reaction of the graphene oxide occurs to the first conductive layer in an electrolyte where the first conductive layer as a working electrode and a second conductive layer with a as a counter electrode are immersed. A manufacturing method of a power storage device including at least a positive electrode, a negative electrode, an electrolyte, and a separator includes a step of forming graphene for an active material layer of one of or both the positive electrode and the negative electrode by the formation method.
    Type: Application
    Filed: October 7, 2014
    Publication date: March 5, 2015
    Inventors: Hiroatsu TODORIKI, Yumiko SAITO, Takahiro KAWAKAMI, Kuniharu NOMOTO, Mikio YUKAWA
  • Patent number: 8945772
    Abstract: A power storage device a positive electrode including a positive electrode active material layer and a negative electrode including a negative electrode active material layer. The positive electrode active material layer includes a plurality of particles of x[Li2MnO3]-(1?x)[LiCo1/3Mn1/3Ni1/3O2] (obtained by assigning 0.5 to x, for example) which is a positive electrode active material, and multilayer graphene with which the plurality of particles of the positive electrode active material are at least partly connected to each other. In the multilayer graphene, a plurality of graphenes are stacked in a layered manner. The graphene contains a six-membered ring composed of carbon atoms, a poly-membered ring which is a seven or more-membered ring composed of carbon atoms, and an oxygen atom bonded to one or more of the carbon atoms in the six-membered ring and the poly-membered ring, which is a seven or more-membered ring.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: February 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takahiro Kawakami, Hiroatsu Todoriki, Teppei Oguni, Takeshi Osada, Shunpei Yamazaki
  • Patent number: 8883351
    Abstract: The formation method of graphene includes the steps of forming a layer including graphene oxide over a first conductive layer; and supplying a potential at which the reduction reaction of the graphene oxide occurs to the first conductive layer in an electrolyte where the first conductive layer as a working electrode and a second conductive layer with a as a counter electrode are immersed. A manufacturing method of a power storage device including at least a positive electrode, a negative electrode, an electrolyte, and a separator includes a step of forming graphene for an active material layer of one of or both the positive electrode and the negative electrode by the formation method.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: November 11, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroatsu Todoriki, Yumiko Saito, Takahiro Kawakami, Kuniharu Nomoto, Mikio Yukawa
  • Publication number: 20140230208
    Abstract: A thin energy storage device having high capacity is obtained. An energy storage device having high output is obtained. A current collector and an active material layer are formed in the same manufacturing step. The number of manufacturing steps of an energy storage device is reduced. The manufacturing cost of an energy storage device is suppressed. One embodiment of the present invention relates to an electric double layer capacitor which includes a pair of electrodes including a porous metal material, and an electrolyte provided between the pair of electrodes; or a lithium ion capacitor which includes a positive electrode that is a porous metal body functioning as a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte provided between the positive electrode and the negative electrode.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 21, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junpei Momo, Yumiko Saito, Rie Matsubara, Hiroatsu Todoriki
  • Patent number: 8749953
    Abstract: A thin energy storage device having high capacity is obtained. An energy storage device having high output is obtained. A current collector and an active material layer are formed in the same manufacturing step. The number of manufacturing steps of an energy storage device is reduced. The manufacturing cost of an energy storage device is suppressed. One embodiment of the present invention relates to an electric double layer capacitor which includes a pair of electrodes including a porous metal material, and an electrolyte provided between the pair of electrodes; or a lithium ion capacitor which includes a positive electrode that is a porous metal body functioning as a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte provided between the positive electrode and the negative electrode.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: June 10, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junpei Momo, Yumiko Saito, Rie Matsubara, Hiroatsu Todoriki
  • Publication number: 20130273428
    Abstract: A power storage device a positive electrode including a positive electrode active material layer and a negative electrode including a negative electrode active material layer. The positive electrode active material layer includes a plurality of particles of x[Li2MnO3]-(1-x)[LiCo1/3Mn1/3Ni1/3O2] (obtained by assigning 0.5 to x, for example) which is a positive electrode active material, and multilayer graphene with which the plurality of particles of the positive electrode active material are at least partly connected to each other. In the multilayer graphene, a plurality of graphenes are stacked in a layered manner. The graphene contains a six-membered ring composed of carbon atoms, a poly-membered ring which is a seven or more-membered ring composed of carbon atoms, and an oxygen atom bonded to one or more of the carbon atoms in the six-membered ring and the poly-membered ring, which is a seven or more-membered ring.
    Type: Application
    Filed: October 4, 2012
    Publication date: October 17, 2013
    Inventors: Takahiro KAWAKAMI, Hiroatsu Todoriki, Teppei Oguni, Takeshi Osada, Shunpei Yamazaki
  • Publication number: 20130266869
    Abstract: The formation method of graphene includes the steps of forming a layer including graphene oxide over a first conductive layer; and supplying a potential at which the reduction reaction of the graphene oxide occurs to the first conductive layer in an electrolyte where the first conductive layer as a working electrode and a second conductive layer with a as a counter electrode are immersed. A manufacturing method of a power storage device including at least a positive electrode, a negative electrode, an electrolyte, and a separator includes a step of forming graphene for an active material layer of one of or both the positive electrode and the negative electrode by the formation method.
    Type: Application
    Filed: September 28, 2012
    Publication date: October 10, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hiroatsu TODORIKI, Yumiko SAITO, Takahiro KAWAKAMI, Kuniharu NOMOTO, Mikio YUKAWA
  • Patent number: 8541783
    Abstract: The present invention relates to a solar power generation device which includes an electric double-layer capacitor and a solar cell. The electric double-layer capacitor includes a pair of current collectors formed using a light-transmitting conductive material; active materials which are dispersed on the pair of current collectors; a light-transmitting electrolyte layer which is provided between the pair of current collectors; and a terminal portion which is electrically connected to the current collector. The solar cell includes, over a light-transmitting substrate, a first light-transmitting conductive film; a photoelectric conversion layer which is provided in contact with the first light-transmitting conductive film; and a second light-transmitting conductive film which is provided in contact with the photoelectric conversion layer.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: September 24, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yumiko Saito, Junpei Momo, Rie Matsubara, Kuniharu Nomoto, Hiroatsu Todoriki
  • Patent number: 8542478
    Abstract: An electric double layer capacitor, a lithium ion capacitor, and a charging device including a solar cell and either of the capacitors are disclosed. The electric double layer capacitor includes a first and second light-transmitting substrates; a pair of current collectors provided perpendicular to the substrates; active material layers provided on facing planes of the current collectors; and an electrolyte in a region surrounded by the substrates and the facing active material layers. The lithium ion capacitor includes a first and second light-transmitting substrates; a positive and negative electrode active material layers provided perpendicular to the substrates; and an electrolyte in a region surrounded by the facing substrates and the positive and negative electrode active material layers.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: September 24, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junpei Momo, Yumiko Saito, Rie Matsubara, Hiroatsu Todoriki
  • Publication number: 20130183226
    Abstract: Highly-pure graphite oxide, graphene oxide, or graphene is mass-produced. Graphite is oxidized by an oxidizer, so that a graphite oxide solution is obtained, and electrodialysis is performed on the graphite oxide solution to remove aqueous ions, whereby the purity of graphite oxide is increased. Graphene oxide manufactured using the graphite oxide is mixed with powder, and the mixture is reduced, whereby graphene exhibiting conductive properties is yielded and the powder can be bonded. Such graphene can be used instead of a conduction auxiliary agent or a binder of a variety of batteries.
    Type: Application
    Filed: July 18, 2012
    Publication date: July 18, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hiroatsu TODORIKI, Yasuhiko TAKEMURA, Kuniharu NOMOTO
  • Publication number: 20130052526
    Abstract: A power storage device with high output is provided, in which the specific surface area is increased while keeping the easy-to-handle particle size of its active material. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte. The negative electrode active material layer includes a negative electrode active material which is a particle in which a plurality of slices of graphite is overlapped with each other with a gap therebetween. It is preferable that the grain diameter of the particle be 1?m to 50 ?m. Further, it is preferable that the electrolyte be in contact with the gap between the slices of graphite.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 28, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junpei MOMO, Hiroatsu Todoriki, Kuniharu Nomoto