Patents by Inventor Hirobumi Nagaoka

Hirobumi Nagaoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220033992
    Abstract: A high-quality nitride crystal can be produced efficiently by charging a nitride crystal starting material that contains tertiary particles having a maximum diameter of from 1 to 120 mm and formed through aggregation of secondary particles having a maximum diameter of from 100 to 1000 ?m, in the starting material charging region of a reactor, followed by crystal growth in the presence of a solvent in a supercritical state and/or a subcritical state in the reactor, wherein the nitride crystal starting material is charged in the starting material charging region in a bulk density of from 0.7 to 4.5 g/cm3 for the intended crystal growth.
    Type: Application
    Filed: September 27, 2021
    Publication date: February 3, 2022
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yutaka MIKAWA, Hideo FUJISAWA, Kazunori KAMADA, Hirobumi NAGAOKA, Shinichiro KAWABATA, Yuji KAGAMITANI
  • Patent number: 11162190
    Abstract: A high-quality nitride crystal can be produced efficiently by charging a nitride crystal starting material that contains tertiary particles having a maximum diameter of from 1 to 120 mm and formed through aggregation of secondary particles having a maximum diameter of from 100 to 1000 ?m, in the starting material charging region of a reactor, followed by crystal growth in the presence of a solvent in a supercritical state and/or a subcritical state in the reactor, wherein the nitride crystal starting material is charged in the starting material charging region in a bulk density of from 0.7 to 4.5 g/cm3 for the intended crystal growth.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: November 2, 2021
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yutaka Mikawa, Hideo Fujisawa, Kazunori Kamada, Hirobumi Nagaoka, Shinichiro Kawabata, Yuji Kagamitani
  • Publication number: 20200109489
    Abstract: A high-quality nitride crystal can be produced efficiently by charging a nitride crystal starting material that contains tertiary particles having a maximum diameter of from 1 to 120 mm and formed through aggregation of secondary particles having a maximum diameter of from 100 to 1000 ?m, in the starting material charging region of a reactor, followed by crystal growth in the presence of a solvent in a supercritical state and/or a subcritical state in the reactor, wherein the nitride crystal starting material is charged in the starting material charging region in a bulk density of from 0.7 to 4.5 g/cm3 for the intended crystal growth.
    Type: Application
    Filed: October 28, 2019
    Publication date: April 9, 2020
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yutaka MIKAWA, Hideo FUJISAWA, Kazunori KAMADA, Hirobumi NAGAOKA, Shinichiro KAWABATA, Yuji KAGAMITANI
  • Patent number: 10526726
    Abstract: A high-quality nitride crystal can be produced efficiently by charging a nitride crystal starting material that contains tertiary particles having a maximum diameter of from 1 to 120 mm and formed through aggregation of secondary particles having a maximum diameter of from 100 to 1000 ?m, in the starting material charging region of a reactor, followed by crystal growth in the presence of a solvent in a supercritical state and/or a subcritical state in the reactor, wherein the nitride crystal starting material is charged in the starting material charging region in a bulk density of from 0.7 to 4.5 g/cm3 for the intended crystal growth.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: January 7, 2020
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yutaka Mikawa, Hideo Fujisawa, Kazunori Kamada, Hirobumi Nagaoka, Shinichiro Kawabata, Yuji Kagamitani
  • Publication number: 20170051434
    Abstract: A high-quality nitride crystal can be produced efficiently by charging a nitride crystal starting material that contains tertiary particles having a maximum diameter of from 1 to 120 mm and formed through aggregation of secondary particles having a maximum diameter of from 100 to 1000 ?m, in the starting material charging region of a reactor, followed by crystal growth in the presence of a solvent in a supercritical state and/or a subcritical state in the reactor, wherein the nitride crystal starting material is charged in the starting material charging region in a bulk density of from 0.7 to 4.5 g/cm3 for the intended crystal growth.
    Type: Application
    Filed: November 9, 2016
    Publication date: February 23, 2017
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yutaka MIKAWA, Hideo FUJISAWA, Kazunori KAMADA, Hirobumi NAGAOKA, Shinichiro KAWABATA, Yuji KAGAMITANI
  • Patent number: 9518337
    Abstract: A high-quality nitride crystal can be produced efficiently by charging a nitride crystal starting material that contains tertiary particles having a maximum diameter of from 1 to 120 mm and formed through aggregation of secondary particles having a maximum diameter of from 100 to 1000 ?m, in the starting material charging region of a reactor, followed by crystal growth in the presence of a solvent in a supercritical state and/or a subcritical state in the reactor, wherein the nitride crystal starting material is charged in the starting material charging region in a bulk density of from 0.7 to 4.5 g/cm3 for the intended crystal growth.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: December 13, 2016
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yutaka Mikawa, Hideo Fujisawa, Kazunori Kamada, Hirobumi Nagaoka, Shinichiro Kawabata, Yuji Kagamitani
  • Publication number: 20150247256
    Abstract: A high-quality nitride crystal can be produced efficiently by charging a nitride crystal starting material that contains tertiary particles having a maximum diameter of from 1 to 120 mm and formed through aggregation of secondary particles having a maximum diameter of from 100 to 1000 ?m, in the starting material charging region of a reactor, followed by crystal growth in the presence of a solvent in a supercritical state and/or a subcritical state in the reactor, wherein the nitride crystal starting material is charged in the starting material charging region in a bulk density of from 0.7 to 4.5 g/cm3 for the intended crystal growth.
    Type: Application
    Filed: May 15, 2015
    Publication date: September 3, 2015
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yutaka MIKAWA, Hideo FUJISAWA, Kazunori KAMADA, Hirobumi NAGAOKA, Shinichiro KAWABATA, Yuji KAGAMITANI
  • Patent number: 9096945
    Abstract: A high-quality nitride crystal can be produced efficiently by charging a nitride crystal starting material that contains tertiary particles having a maximum diameter of from 1 to 120 mm and formed through aggregation of secondary particles having a maximum diameter of from 100 to 1000 ?m, in the starting material charging region of a reactor, followed by crystal growth in the presence of a solvent in a supercritical state and/or a subcritical state in the reactor, wherein the nitride crystal starting material is charged in the starting material charging region in a bulk density of from 0.7 to 4.5 g/cm3 for the intended crystal growth.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: August 4, 2015
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yutaka Mikawa, Hideo Fujisawa, Kazunori Kamada, Hirobumi Nagaoka, Shinichiro Kawabata, Yuji Kagamitani
  • Publication number: 20130108537
    Abstract: A high-quality nitride crystal can be produced efficiently by charging a nitride crystal starting material that contains tertiary particles having a maximum diameter of from 1 to 120 mm and formed through aggregation of secondary particles having a maximum diameter of from 100 to 1000 ?m, in the starting material charging region of a reactor, followed by crystal growth in the presence of a solvent in a supercritical state and/or a subcritical state in the reactor, wherein the nitride crystal starting material is charged in the starting material charging region in a bulk density of from 0.7 to 4.5 g/cm3 for the intended crystal growth.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 2, 2013
    Inventors: Yutaka MIKAWA, Hideo FUJISAWA, Kazunori KAMADA, Hirobumi NAGAOKA, Shinichiro KAWABATA, Yuji KAGAMITANI
  • Patent number: 8142566
    Abstract: A Ga-containing nitride semiconductor single crystal characterized in that (a) the maximum reflectance measured by irradiating the Ga-containing nitride semiconductor single crystal with light at a wavelength of 450 nm is 20% or less and the difference between the maximum reflectance and the minimum reflectance is within 10%, (b) the ratio of maximum value to minimum value (maximum value/minimum value) of the dislocation density measured by a cathode luminescence method is 10 or less, and/or (c) the lifetime measured by a time-resolved photoluminescence method is 95 ps or more.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: March 27, 2012
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Kazumasa Kiyomi, Hirobumi Nagaoka, Hirotaka Oota, Isao Fujimura
  • Patent number: 7794541
    Abstract: Disclosed is a method of manufacturing a GaN-based material having high thermal conductivity. A gallium nitride-based material is grown by HVPE (Hydride Vapor Phase Epitaxial Growth) by supplying a carrier gas (G1) containing H2 gas, GaCl gas (G2), and NH3 gas (G3) to a reaction chamber (10), and setting the growth temperature at 900 (° C.) (inclusive) to 1,200 (° C.) (inclusive), the growth pressure at 8.08×104 (Pa) (inclusive) to 1.21×105 (Pa) (inclusive), the partial pressure of the GaCl gas (G2) at 1.0×104 (Pa) (inclusive) to 1.0×104 (Pa) (inclusive), and the partial pressure of the NH3 gas (G3) at 9.1×102 (Pa) (inclusive) to 2.0×104 (Pa) (inclusive).
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: September 14, 2010
    Assignees: Tohoku University, Mitsubishi Chemical Corporation
    Inventors: Hiroyuki Shibata, Yoshio Waseda, Kenji Shimoyama, Kazumasa Kiyomi, Hirobumi Nagaoka
  • Publication number: 20100162945
    Abstract: A method to make gallium nitride-based material by Hydride Vapor Phase Epitaxial Growth is provided.
    Type: Application
    Filed: March 8, 2010
    Publication date: July 1, 2010
    Applicants: Tohoku University, Mitsubishi Chemical Corporation
    Inventors: Hiroyuki Shibata, Yoshio Waseda, Kenji Shimoyama, Kazumasa Kiyomi, Hirobumi Nagaoka
  • Publication number: 20100140536
    Abstract: A gallium nitride-based material prepared by a vertical Hydride Vapor Phase Epitaxial Growth method which has thermal conductivity of at least 2.8×102 W/m·K at 25° C. is provided.
    Type: Application
    Filed: February 17, 2010
    Publication date: June 10, 2010
    Applicants: Tohoku University, Mitsubishi Chemical Corporation
    Inventors: Hiroyuki SHIBATA, Yoshio Waseda, Kenji Shimoyama, Kazumasa Kiyomi, Hirobumi Nagaoka
  • Publication number: 20090081110
    Abstract: Disclosed is a method of manufacturing a GaN-based material having high thermal conductivity. A gallium nitride-based material is grown by HVPE (Hydride Vapor Phase Epitaxial Growth) by supplying a carrier gas (G1) containing H2 gas, GaCl gas (G2), and NH3 gas (G3) to a reaction chamber (10), and setting the growth temperature at 900 (° C.) (inclusive) to 1,200 (° C.) (inclusive), the growth pressure at 8.08×104 (Pa) (inclusive) to 1.21×105 (Pa) (inclusive), the partial pressure of the GaCl gas (G2) at 1.0×104 (Pa) (inclusive) to 1.0×104 (Pa) (inclusive), and the partial pressure of the NH3 gas (G3) at 9.1×102 (Pa) (inclusive) to 2.0×104 (Pa) (inclusive).
    Type: Application
    Filed: March 8, 2007
    Publication date: March 26, 2009
    Applicants: Tohoku University, MITSUBISHI CHEMICAL CORPORATION
    Inventors: Hiroyuki Shibata, Yoshio Waseda, Kenji Shimoyama, Kazumasa Kiyomi, Hirobumi Nagaoka
  • Publication number: 20080308812
    Abstract: A Ga-containing nitride semiconductor single crystal characterized in that (a) the maximum reflectance measured by irradiating the Ga-containing nitride semiconductor single crystal with light at a wavelength of 450 nm is 20% or less and the difference between the maximum reflectance and the minimum reflectance is within 10%, (b) the ratio of maximum value to minimum value (maximum value/minimum value) of the dislocation density measured by a cathode luminescence method is 10 or less, and/or (c) the lifetime measured by a time-resolved photoluminescence method is 95 ps or more.
    Type: Application
    Filed: August 5, 2005
    Publication date: December 18, 2008
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Kazumasa Kiyomi, Hirobumi Nagaoka, Hirotaka Oota, Isao Fujimura