Patents by Inventor Hirofumi Okazaki

Hirofumi Okazaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130340659
    Abstract: In a boiler having plurality of burners arranged on a furnace wall of a furnace, each burner includes a cylindrical fuel nozzle for injecting a mixture of fuel and carrier gas therefor into the furnace; one or more cylindrical air nozzles provided on the outer circumference of the nozzle for injecting combustion air into the furnace, and a wind box for supplying combustion air to the nozzles in common. The wind box is provided with openings through which combustion air flows in from one direction perpendicular to the axial direction of the burner, and is partitioned by a partition wall to form plurality of parallel flow paths for the air flowing in through the openings. Some of the plurality of flow paths are connected to an upper part of the combustion air nozzle, and the other flow paths are connected to a lower part of the nozzle.
    Type: Application
    Filed: February 22, 2011
    Publication date: December 26, 2013
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Yusuke Ochi, Kouji Kuramashi, Kenji Kiyama, Hirofumi Okazaki
  • Patent number: 8601684
    Abstract: A manufacturing method for a vehicle capable of reducing man-hours, improving worker posture, and increasing worker efficiency in a step for mounting components on a frame as part of vehicle assembly steps. Some or all components such as tanks, pipes and wires are mounted on a frame 3 before assembling the frame 3. Namely, some or all components are first mounted on side rails, which are elements of the frame 3, and cross members 2 are then assembled to the side rails 1. Side rail holding stands are disposed on a working surface plate to hold a pair of side rails 1 in parallel and at a prescribed height, and in accordance with advancement of work, rotate each of the side rails 1 about a longitudinal axis thereof. Each side rail is rotated hydraulically by a prescribed angle (approximately 90 degrees) about a longitudinal axis thereof.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: December 10, 2013
    Assignee: Hino Motors Ltd.
    Inventors: Mitsuyoshi Yamada, Hirofumi Okazaki, Yoshio Banba
  • Publication number: 20130319301
    Abstract: A spray nozzle is provided with upper and lower channels and from respective surfaces, the two channels form a cross shape, and become a fuel spray hole by communication of an intersecting part. A guide member is provided, in contact with the upstream-side channel, in a position overlapped with the intersecting part with respect to the spray direction of the spray nozzle. Spray fluid is branched with the guide member from the fuel fluid duct connected to the spray nozzle, passes through the upstream-side channel, to the intersecting part, and is sprayed. The spray fluid forms opposed flows toward the intersecting part in the upstream-side channel to collide with each other at an obtuse angle of 90° or greater, then is sprayed from the intersecting part, to form a thin fan-shaped liquid film. The liquid film is divided by a shearing force from the peripheral gas, atomized into spray particles.
    Type: Application
    Filed: January 12, 2012
    Publication date: December 5, 2013
    Applicant: Babcock-Hitachi K.K.
    Inventors: Hirofumi Okazaki, Koji Kuramashi, Hideo Okimoto, Akihito Orii, Kenichi Ochi
  • Publication number: 20130291772
    Abstract: An oxygen combustion system includes a boiler to burn fuel using combustion gas composed of oxygen-rich gas and circulating flue gas, a dust remover disposed in a flue through which flue gas discharged from the boiler flows, a second flue leading the combustion gas to the boiler, the combustion gas being made by mixing the circulating flue gas extracted downstream of the dust remover with the oxygen-rich gas, a combustion gas heater exchanging heat between the flue gas flowing between the boiler and dust remover and the combustion gas flowing through the second flue, and a flue gas cooler disposed between the heater and the dust remover to cool the flue gas. A control unit controls at least one of a flow rate and cooling medium temperature of the flue gas cooler such that temperature of the flue gas introduced into the dust remover will be between 90° C. and 140° C.
    Type: Application
    Filed: September 30, 2011
    Publication date: November 7, 2013
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Toshihiko Mine, Kenji Kiyama, Koji Kuramashi, Kenichi Ochi, Hirofumi Okazaki
  • Publication number: 20130273481
    Abstract: A boiler operating method operates a boiler by switching between air combustion mode and oxygen combustion mode when burning fossil fuel with first combustion gas and second combustion gas. The second combustion gas compensates for oxygen deficiency in the first combustion gas. The air combustion mode uses air as the first combustion gas and the second combustion gas while the oxygen combustion mode uses mixed gas of combustion flue gas and oxygen-rich gas as the first combustion gas and the second combustion gas, the combustion flue gas being produced when the fossil fuel is burned. By mixing the oxygen-rich gas in the air in the process of switching between air combustion mode and oxygen combustion mode, the air being the first combustion gas used in the air combustion mode, the boiler operating method can switch between the air combustion mode and oxygen combustion mode while maintaining stable combustion.
    Type: Application
    Filed: October 21, 2011
    Publication date: October 17, 2013
    Applicants: FORTUM CORPORATION, BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Hirofumi Okazaki, Koji Kuramashi, Hideo Okimoto, Kenichi Ochi, Naoya Imooka, Pauli Dernjatin
  • Publication number: 20130255547
    Abstract: A pulverized coal-fired boiler efficiently supplies air to a central part of a furnace and the neighborhood of a furnace wall, thereby promoting mixture with combustion gas, and reducing both NOx and CO. The main after air ports are structured so as to jet air having a large momentum for enabling arrival at the central part of the furnace, and the sub-after air ports are structured so as to jet air having a small momentum to the neighborhood of the wall face of the furnace, and a sectional center of each of the sub-after air ports is within a range from 1 to 5 times of a caliber of the main after air ports from a sectional center of each of the main after air ports.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 3, 2013
    Applicant: BABCOCK-HITACHI K.K
    Inventors: Yuki KAMIKAWA, Masayuki TANIGUCHI, Hisayuki ORITA, Hironobu KOBAYASHI, Akira BABA, Toshihiko MINE, Shinichirou NOMURA, Noriyuki OOYATSU, Satoshi TADAKUMA, Hidehisa YOSHIZAKO, Hiroaki KANEMOTO, Kouji KURAMASHI, Akihito ORII, Shinji TSUDA, Hirofumi OKAZAKI, Takanori YANO, Katsumi SHIMOHIRA
  • Patent number: 8505472
    Abstract: A pulverized coal-fired boiler efficiently supplies air to a central part of a furnace and the neighborhood of a furnace wall, thereby promoting mixture with combustion gas, and reducing both NOx and CO. The main after air ports are structured so as to jet air having a large momentum for enabling arrival at the central part of the furnace, and the sub-after air ports are structured so as to jet air having a small momentum to the neighborhood of the wall face of the furnace, and a sectional center of each of the sub-after air ports is within a range from 1 to 5 times of a caliber of the main after air ports from a sectional center of each of the main after air ports.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: August 13, 2013
    Assignee: Babcock-Hitachi K.K.
    Inventors: Yuki Kamikawa, Masayuki Taniguchi, Hisayuki Orita, Hironobu Kobayashi, Akira Baba, Toshihiko Mine, Shinichirou Nomura, Noriyuki Ooyatsu, Satoshi Tadakuma, Hidehisa Yoshizako, Hiroaki Kanemoto, Kouji Kuramashi, Akihito Orii, Shinji Tsuda, Hirofumi Okazaki, Takanori Yano, Katsumi Shimohira
  • Publication number: 20120137938
    Abstract: A pulverized coal boiler of the present invention is structured so as to form, among upper and lower after-air nozzles, an opening serving as an outlet of the lower after-air nozzle positioned on the upstream side is formed in a rectangular shape, a cylindrical section for defining a minimum flow path area of combustion air flowing through a flow path of the after-air nozzle is installed inside of the lower after-air nozzles along the flow path of the lower after-air nozzle, and a swirl blade for giving a swirl force to the combustion air flowing through the flow path of the after-air nozzles is installed inside of the cylindrical section, and the flow path of the lower after-air nozzles is formed so that a flow path area of the flow path of the after-air nozzles through which the combustion air flows from a position where the cylindrical section is installed toward the opening of each of the lower after-air nozzles is expanded.
    Type: Application
    Filed: August 3, 2010
    Publication date: June 7, 2012
    Inventors: Akihito Orii, Hirofumi Okazaki, Yusuke Ochi
  • Publication number: 20110119888
    Abstract: A manufacturing method and assembly assisting device for a vehicle capable of reducing man-hours, improving worker posture, and increasing worker efficiency in a step for mounting components on a frame as part of a vehicle assembly step. Some or all of components such as tanks, pipes and wires are mounted on a frame 3 before assembling the frame 3. Namely, some or all of components are first mounted on side rails, which are elements of the frame 3, and cross members 2 are then assembled to the side rails 1. Side rail holding stands disposed on a working surface plate hold a pair of side rails 1 in parallel and at a prescribed height, and in accordance with advancement of work, rotate each of the side rails 1 about a longitudinal axis thereof. Each side rail holding stand includes a means for hydraulically rotating the held side rail by a prescribed angle (approximately 90 degrees) about a longitudinal axis thereof, and a means for controlling the rotating means.
    Type: Application
    Filed: March 31, 2005
    Publication date: May 26, 2011
    Inventors: Mitsuyoshi Yamada, Hirofumi Okazaki, Yoshio Banba
  • Patent number: 7922480
    Abstract: The invention provides a combustion apparatus which can inhibit an NOx generation even in the case of promoting a mixing between a high-temperature combustion gas and an air so as to intend to reduce an unburned combustible. In a combustion apparatus provided with a burner burning a fuel within a furnace in a theoretical air ratio or less, and an air port supplying a combustion air for a shortfall in the burner, a supply apparatus for supplying a nitrogen oxide generation inhibiting gas is provided in a mixing region between the both or near the mixing region. Further, the invention provides a wind box which can inhibit an NOx generation even in the case of promoting a mixing between a high-temperature combustion gas and an air so as to intend to reduce an unburned combustible.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: April 12, 2011
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Kenji Kiyama, Shigeki Morita, Osamu Okada, Koji Kuramashi, Takanori Yano, Kenichi Ochi, Akira Baba, Miki Shimogori, Takeru Fukuchi, Hiroshi Yamaguchi, Hironobu Kobayashi, Masayuki Taniguchi, Hirofumi Okazaki, Kenji Yamamoto
  • Publication number: 20110053102
    Abstract: An air nozzle provided on the outer side of a fuel nozzle of a solid fuel burner is divided into a plurality of regions, and has means for regulating air flow rates in nozzles divided in the upper and lower direction. The nozzles (regions) are connected to only the nozzle wall and have obstacles in the circumferential direction, dividing the inside of the nozzle into a plurality of regions, and by changing air flow rates in the respective regions in the outermost peripheral air nozzle, a deviation in momentum is caused in the vertical direction of the burner, a flame forming position is changed, and a combustion gas temperature at the furnace outlet, temperatures of a heat transfer tube installed on the furnace wall surface and a fluid flowing in the heat transfer tube or temperatures of heat transfer tubes provided in the furnace and a flue on the downstream side and temperatures of fluids flowing in the heat transfer tubes are controlled to be constant.
    Type: Application
    Filed: April 3, 2009
    Publication date: March 3, 2011
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Hirofumi Okazaki, Kenji Kiyama, Yusuke Ochi, Kouji Kuramashi
  • Patent number: 7878130
    Abstract: A overfiring air port of the present invention is to supply an incomplete combustion region with air making up for combustion-shortage, in a furnace in which the incomplete combustion region less than stoichiometric ratio is formed by a burner. Furthermore, the airport is characterized by comprising: a nozzle mechanism for injecting air including an axial velocity component of an air flow and a radial velocity component directed to a center line of the airport; and a control mechanism for controlling a ratio of these velocity components.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: February 1, 2011
    Assignee: Babcock-Hitachi K.K.
    Inventors: Kenji Yamamoto, Hirofumi Okazaki, Masayuki Taniguchi, Kazumi Yasuda, Kenji Kiyama, Takanori Yano, Akira Baba, Kenichi Ochi, Hisayuki Orita, Akihito Orii, Yuki Kamikawa, Kouji Kuramashi
  • Publication number: 20100269741
    Abstract: A solid fuel burner and its combustion method suited for encouraging fuel ignition and avoiding slugging caused by combustion ash, wherein a gas of low oxygen concentration (exhaust combustion gas) is used as a carrier gas of such a low grade solid fuel as brown coal. An additional air nozzle for jetting additional air having a velocity component in the circumferential direction of a fuel nozzle is provided in the fuel nozzle, thereby encouraging mixing between the fuel and air in the fuel nozzle. Further, the amount of air supplied from the additional air nozzle is adjusted in response to the difference in combustion loads. Under light load, the amount of air supplied from the additional air nozzle is increased so as to increase the oxygen concentration of the circulating flow formed downstream of the outside of the outlet of the fuel nozzle, whereby stable combustion is ensured.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 28, 2010
    Applicant: BABCOCK-HITACHI K.K.
    Inventors: Hirofumi OKAZAKI, Kenji YAMAMOTO, Kenji KIYAMA, Kouji KURAMASHI
  • Publication number: 20100224108
    Abstract: A pulverized coal-fired boiler efficiently supplies air to a central part of a furnace and the neighborhood of a furnace wall, thereby promoting mixture with combustion gas, and reducing both NOx and CO. The main after air ports are structured so as to jet air having a large momentum for enabling arrival at the central part of the furnace, and the sub-after air ports are structured so as to jet air having a small momentum to the neighborhood of the wall face of the furnace, and a sectional center of each of the sub-after air ports is within a range from 1 to 5 times of a caliber of the main after air ports from a sectional center of each of the main after air ports.
    Type: Application
    Filed: January 10, 2007
    Publication date: September 9, 2010
    Inventors: Yuki Kamikawa, Masayuki Taniguchi, Hisayuki Orita, Hironobu Kobayashi, Akira Baba, Toshihiko Mine, Shinichirou Nomura, Noriyuki Ooyatsu, Satoshi Tadakuma, Hidehisa Yoshizako, Hiroaki Kanemoto, Kouji Kuramashi, Akihito Orii, Shinji Tsuda, Hirofumi Okazaki, Takanori Yano, Katsumi Shimohira
  • Publication number: 20100223926
    Abstract: A pulverized coal thermal power generation system that significantly reduces the amount of NOx emissions from a boiler and does not require a denitration unit is provided. When a denitration unit is not used, performance to remove mercury from a boiler waste gas is reduced. A waste gas purification system for a pulverized coal boiler, that compensates for this is provided. A pulverized coal boiler having a furnace for burning pulverized coal, burners for supplying pulverized coal and air used for combustion into the furnace so as to burn the pulverized coal in an insufficient air state and after-air ports provided on the downstream side of the burners for supplying air used for perfect combustion characterized in that, an air ratio in the furnace is 1.05 to 1.14, and the residence time of a combustion gas from the burner disposed on the uppermost stage to a main after-air port is 1.1 to 3.3 seconds.
    Type: Application
    Filed: May 14, 2008
    Publication date: September 9, 2010
    Applicant: Babcock-Hitachi K.K.
    Inventors: Hisayuki Orita, Masayuki Taniguchi, Akihito Orii, Yuki Kamikawa, Hirofumi Okazaki
  • Patent number: 7770528
    Abstract: A solid fuel burner and its combustion method suited for encouraging fuel ignition and avoiding slugging caused by combustion ash, wherein a gas of low oxygen concentration (exhaust combustion gas) is used as a carrier gas of such a low grade solid fuel as brown coal. An additional air nozzle for jetting additional air having a velocity component in the circumferential direction of a fuel nozzle is provided in the fuel nozzle, thereby encouraging mixing between the fuel and air in the fuel nozzle. Further, the amount of air supplied from the additional air nozzle is adjusted in response to the difference in combustion loads. Under light load, the amount of air supplied from the additional air nozzle is increased so as to increase the oxygen concentration of the circulating flow formed downstream of the outside of the outlet of the fuel nozzle, whereby stable combustion is ensured.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: August 10, 2010
    Assignee: Babcock- Hitachi K.K.
    Inventors: Hirofumi Okazaki, Kenji Yamamoto, Kenji Kiyama, Kouji Kuramashi
  • Publication number: 20100162930
    Abstract: Provided is a solid fuel burner (60) suitable for controlling a flame to be formed by combustion of fuel ejected from the burner (60) and a temperature distribution in a furnace, a combustion apparatus using the solid fuel burner (60), and a method of operating the combustion apparatus. Providing in the fuel nozzle (10) a plurality of gas ejection nozzles (81), (82) and a restriction (obstacle) (19) downstream thereof, and ejecting a relatively large amount of gas from a portion of the gas ejection nozzles (81) provides a circumferential distribution in fuel concentration. Further, having the restriction (obstacle) (19) on a downstream side increases a deviation in fuel concentration. Providing a fuel concentration deviation in the circumferential direction makes it possible to change the forming position of a flame.
    Type: Application
    Filed: March 6, 2008
    Publication date: July 1, 2010
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Hirofumi Okazaki, Koji Kuramashi, Yusuke Ochi, Akira Baba, Takanori Yano
  • Patent number: 7681508
    Abstract: An after-air nozzle capable of reducing NOx and CO and a boiler equipped with such a nozzle are provided The after-air nozzle has a vena contracta such that an outside diameter of a flow passage diminishes towards the air-jetting port which supplies air to a boiler, and a changing apparatus changes a flow passage cross-sectional area of the vena contracta. A method of use of such an after-air nozzle and a boiler so equipped is also provided.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: March 23, 2010
    Assignee: Babcock-Hitachi K.K.
    Inventors: Masayuki Taniguchi, Kenji Yamamoto, Hirofumi Okazaki, Kazumi Yasuda, Kenji Kiyama, Takanori Yano, Akira Baba
  • Publication number: 20100064986
    Abstract: The present invention provides a solid fuel burner, which, while rendering the capacity larger than that in the conventional art, can suppress an increase in an unignited region and thus can realize the prevention of an increase in NOx concentration in a combustion gas and the prevention of a lowering in combustion efficiency, and a combustion equipment and boiler including the burner. The burner includes a fuel-containing fluid supply nozzle (12) which supplies a fuel-containing fluid, from a connecting part in a fluid transfer flow passage (10) for transferring a fuel-containing fluid including a fuel and a medium for transfer of the fuel, toward an outlet part provided on the wall of a furnace (4).
    Type: Application
    Filed: March 27, 2007
    Publication date: March 18, 2010
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Kenji Kiyama, Akira Baba, Takanori Yano, Osamu Okada, Hirofumi Okazaki, Kouji Kuramashi
  • Patent number: 7665408
    Abstract: A solid fuel burner using a low oxygen concentration gas as a transporting gas of a low grade solid fuel such as brown coal or the like and a combustion method using the solid fuel burner are provided. The solid fuel burner comprises a means for accelerating ignition of the fuel and a means for preventing slugging caused by combustion ash from occurring. Mixing of fuel and air inside a fuel nozzle 11 is accelerated by that an additional air nozzle 12 and a separator 35 for separating a flow passage are arranged in the fuel nozzle 11, and the exit of the additional air nozzle 12 is set at a position so as to overlap with the separator 35 when seeing from a direction perpendicular to a burner axis, and additional air is ejected in a direction nearly perpendicular to a flow direction of a fuel jet flowing through the fuel nozzle 11. An amount of air from the additional air nozzle 12 is varied corresponding to a combustion load.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: February 23, 2010
    Assignees: Hitachi, Ltd., Babcock-Hitachi K.K.
    Inventors: Hirofumi Okazaki, Masayuki Taniguchi, Toshikazu Tsumura, Yoshitaka Takahashi, Kouji Kuramashi