Patents by Inventor Hirofumi Shouji

Hirofumi Shouji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230295766
    Abstract: Provided is a method for treating a sulfide, the method being suitable for obtaining nickel and/or cobalt from a sulfide containing copper and nickel and/or cobalt. The method relates to a method for treating a sulfide containing copper and nickel and/or cobalt, the method including pulverizing the sulfide by subjecting the sulfide to a pulverizing treatment so as to obtain a pulverized sulfide having a particle size of 800 ?m or less; and leaching the pulverized sulfide by subjecting the pulverized sulfide to a leaching treatment with an acid under a condition in which a sulfurizing agent is present to obtain a leachate. For example, the sulfide to be treated is generated by reducing, heating, and melting a waste lithium-ion battery to obtain a molten body and adding a sulfurizing agent to the molten body to sulfurize the molten body.
    Type: Application
    Filed: August 5, 2021
    Publication date: September 21, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroshi Takenouchi, Shin-ichi Heguri, Satoshi Asano, Hirofumi Shouji
  • Publication number: 20230167526
    Abstract: An alloy treatment method is provided, in which a solution containing nickel and/or cobalt is obtained from an alloy containing nickel and/or cobalt and also containing copper and zinc, the method comprising: a leaching step for subjecting the alloy to a leaching treatment with an acid under the condition where a sulfating agent is present to produce a leachate; a reduction step for subjecting the leachate to a reduction treatment using a reducing agent to produce a reduced solution; an oxidation/neutralization step for adding an oxidizing agent and a neutralizing agent to the reduced solution to produce a neutralized solution containing nickel and/or cobalt and also containing zinc; and a solvent extraction step for subjecting the neutralized solution to a solvent extraction procedure using an acidic phosphorus compound-based extractant to produce a solution containing nickel and/or cobalt.
    Type: Application
    Filed: March 11, 2021
    Publication date: June 1, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Keiji Kudou, Satoshi Asano, Shin-ichi Heguri, Hiroshi Takenouchi, Hirofumi Shouji, Itsumi Matsuoka, Shota Sanjo, Takumi Matsugi
  • Publication number: 20230160035
    Abstract: The present invention is a method for treating an alloy, by which a solution that contains nickel and/or cobalt is obtained from an alloy that contains copper, zinc, and nickel and/or cobalt, said method comprising: a leaching process wherein a leachate is obtained by subjecting the alloy to a leaching treatment by means of an acid in the coexistence of a sulfurizing agent; a reduction process wherein the leachate is subjected to a reduction treatment with use of a reducing agent; and an ion exchanging process wherein a solution that contains nickel and/or cobalt is obtained by bringing a solution, which has been obtained in the reduction process, into contact with an amino phosphoric acid-based chelate resin, thereby having zinc adsorbed on the amino phosphoric acid-based chelate resin.
    Type: Application
    Filed: March 11, 2021
    Publication date: May 25, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Keiji Kudou, Satoshi Asano, Shin-ichi Heguri, Hiroshi Takenouchi, Hirofumi Shouji, Itsumi Matsuoka, Shota Sanjo, Takumi Matsugi
  • Publication number: 20230071697
    Abstract: Provided is a method for treating an alloy by which nickel and/or cobalt can be selectively isolated from an alloy that contains copper as well as nickel and/or cobalt, in a waste lithium ion battery. The present invention is a method for treating an alloy, by which a solution that contains nickel and/or cobalt is obtained from an alloy that contains copper as well as nickel and/or cobalt, the method including: a leaching step in which a leachate is obtained by subjecting an alloy to an acid-based leaching treatment under conditions in which a sulfurizing agent is also present; a reduction step in which a reduced solution is obtained by subjecting the leachate to a reduction treatment using a reducing agent; and an oxidation/neutralization step in which a solution that contains nickel and/or cobalt is obtained by adding an oxidizing agent and also a neutralizing agent to the reduced solution.
    Type: Application
    Filed: February 10, 2021
    Publication date: March 9, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroshi Takenouchi, Satoshi Asano, Shin-ichi Heguri, Hirofumi Shouji, Keiji Kudou, Itsumi Matsuoka, Shota Sanjo, Takumi Matsugi
  • Patent number: 10227675
    Abstract: A wet smelting method for nickel oxide ores from which nickel, cobalt, etc. are recovered is provided with which it is possible to reduce the consumption of an acid in leaching, such as sulfuric acid, and to recover valuable metals. The method comprises: step (A) in which nickel oxide ores as a raw material are separated into a limonite-type ore having a low magnesium content and a saprolite-type ore having a high magnesium content; step (B) in which the saprolite-type ore is subjected to normal-pressure leaching under given standardized leaching conditions using the pressure leachate obtained by pressure leaching in step (C); and step (C) in which the limonite-type ore obtained in step (A) is mixed with the normal-pressure leaching residue obtained in step (B) and the mixture is reacted with sulfuric acid in an acidic atmosphere having a high temperature and a high pressure, thereby conducting pressure leaching.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: March 12, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hirofumi Shouji, Keiji Kudo, Yoshitomo Ozaki, Hiroshi Kobayashi, Satoshi Asano
  • Patent number: 10081851
    Abstract: Provided is a method for recovering scandium, with which it is possible to easily and efficiently recover high-purity scandium from nickel oxide ores. This method for recovering scandium involves passing a solution containing scandium through an ion exchange resin, then subjecting the eluant eluted from the ion exchange resin to solvent extraction and separating the extraction residual liquid and the extraction agent after extraction, then performing an oxalation process on the extraction residual liquid to obtain a scandium oxalate precipitate, and roasting the precipitate to obtain scandium oxide, wherein the method is characterized in that an amine-based extraction agent is used as the extraction agent for solvent extraction.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: September 25, 2018
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Itsumi Matsuoka, Hidemasa Nagai, Keiji Kudo, Shin-ya Matsumoto, Tatsuya Higaki, Yoshitomo Ozaki, Hirofumi Shouji, Hiroshi Kobayashi
  • Publication number: 20180037972
    Abstract: A wet smelting method for nickel oxide ores from which nickel, cobalt, etc. are recovered is provided with which it is possible to reduce the consumption of an acid in leaching, such as sulfuric acid, and to recover valuable metals. The method comprises: step (A) in which nickel oxide ores as a raw material are separated into a limonite-type ore having a low magnesium content and a saprolite-type ore having a high magnesium content; step (B) in which the saprolite-type ore is subjected to normal-pressure leaching under given standardized leaching conditions using the pressure leachate obtained by pressure leaching in step (C); and step (C) in which the limonite-type ore obtained in step (A) is mixed with the normal-pressure leaching residue obtained in step (B) and the mixture is reacted with sulfuric acid in an acidic atmosphere having a high temperature and a high pressure, thereby conducting pressure leaching.
    Type: Application
    Filed: December 8, 2015
    Publication date: February 8, 2018
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hirofumi Shouji, Keiji Kudo, Yoshitomo Ozaki, Hiroshi Kobayashi, Satoshi Asano
  • Publication number: 20170321301
    Abstract: Provided is a method for recovering scandium, with which it is possible to easily and efficiently recover high-purity scandium from nickel oxide ores. This method for recovering scandium involves passing a solution containing scandium through an ion exchange resin, then subjecting the eluant eluted from the ion exchange resin to solvent extraction and separating the extraction residual liquid and the extraction agent after extraction, then performing an oxalation process on the extraction residual liquid to obtain a scandium oxalate precipitate, and roasting the precipitate to obtain scandium oxide, wherein the method is characterized in that an amine-based extraction agent is used as the extraction agent for solvent extraction.
    Type: Application
    Filed: November 25, 2015
    Publication date: November 9, 2017
    Inventors: Itsumi Matsuoka, Hidemasa Nagai, Keiji Kudo, Shin-ya Matsumoto, Tatsuya Higaki, Yoshitomo Ozaki, Hirofumi Shouji, Hiroshi Kobayashi
  • Patent number: 9776885
    Abstract: Provided is a production method for refining iron oxide (hematite), which has such a low sulfur content as to be used as an iron-making raw material, from a leach residue containing iron oxide produced by a high pressure acid leach (HPAL) process. In the method for refining iron oxide for ironmaking by a process of adding sulfuric acid to nickel oxide ore and then leaching nickel from the nickel oxide ore using a pressure vessel, an amount of the sulfuric acid added is 150 kg or more and 220 kg or less per ton of nickel oxide ore.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: October 3, 2017
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yoshitomo Ozaki, Manabu Enomoto, Hirofumi Shouji, Tatsuya Higaki
  • Patent number: 9255013
    Abstract: Provided is a method for producing hematite for ironmaking, wherein high purity hematite, which can be used as an iron-making raw material, is cheaply and efficiently recovered from a leach residue containing iron oxide produced by a high pressure acid leach (HPAL) process. This method for producing (high purity) hematite for ironmaking in a process of adding a mineral acid and an oxidant to ore containing iron and valuable metals and then leaching the valuable metals under high pressure and high temperature includes (1) a neutralization step of adding a neutralizer to a leachate obtained under high pressure and high temperature to form a leach slurry, (2) a solid-liquid separation step of separating the leach slurry obtained in the neutralization step (1) into a leach residue and the leachate, and (3) a classification step of classifying the leach residue into the hematite and gangue components.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: February 9, 2016
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Hideki Sasaki, Yoshitomo Ozaki, Manabu Enomoto, Hirofumi Shouji, Tatsuya Higaki, Hiroyuki Mitsui, Yasumasa Kan
  • Publication number: 20150050201
    Abstract: Provided is a production method for refining iron oxide (hematite), which has such a low sulfur content as to be used as an iron-making raw material, from a leach residue containing iron oxide produced by a high pressure acid leach (HPAL) process. In the method for refining iron oxide for ironmaking by a process of adding sulfuric acid to nickel oxide ore and then leaching nickel from the nickel oxide ore using a pressure vessel, an amount of the sulfuric acid added is 150 kg or more and 220 kg or less per ton of nickel oxide ore.
    Type: Application
    Filed: February 13, 2013
    Publication date: February 19, 2015
    Inventors: Yoshitomo Ozaki, Manabu Enomoto, Hirofumi Shouji, Tatsuya Higaki
  • Publication number: 20150023851
    Abstract: Provided is a method for producing hematite for ironmaking, wherein high purity hematite, which can be used as an iron-making raw material, is cheaply and efficiently recovered from a leach residue containing iron oxide produced by a high pressure acid leach (HPAL) process. This method for producing (high purity) hematite for ironmaking in a process of adding a mineral acid and an oxidant to ore containing iron and valuable metals and then leaching the valuable metals under high pressure and high temperature includes (1) a neutralization step of adding a neutralizer to a leachate obtained under high pressure and high temperature to form a leach slurry, (2) a solid-liquid separation step of separating the leach slurry obtained in the neutralization step (1) into a leach residue and the leachate, and (3) a classification step of classifying the leach residue into the hematite and gangue components.
    Type: Application
    Filed: January 16, 2013
    Publication date: January 22, 2015
    Inventors: Hideki Sasaki, Yoshitomo Ozaki, Manabu Enomoto, Hirofumi Shouji, Tatsuya Higaki, Hiroyuki Mitsui, Yasumasa Kan
  • Patent number: 7563421
    Abstract: A hydrometallurgical process based on pressure leaching at elevated temperature for recovering nickel from nickel oxide ores, characterized by a simplified and efficient process as a whole, realizing a simplified leaching stage, reduced neutralizer consumption and precipitate production in the neutralization stage, and efficient use of recycled water. The hydrometallurgical process of the present invention, comprising a leaching stage which stirs the slurried ore in the presence of sulfuric acid at 220 to 280° C.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: July 21, 2009
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Hiroshi Kobayashi, Hirofumi Shouji, Masaki Imamura, Yoshitomo Ozaki, Naoyuki Tsuchida
  • Publication number: 20050265910
    Abstract: A hydrometallurgical process based on pressure leaching at elevated temperature for recovering nickel from nickel oxide ores, characterized by a simplified and efficient process as a whole, realizing a simplified leaching stage, reduced neutralizer consumption and precipitate production in the neutralization stage, and efficient use of recycled water. The hydrometallurgical process of the present invention, comprising a leaching stage which stirs the slurried ore in the presence of sulfuric acid at 220 to 280° C.
    Type: Application
    Filed: May 10, 2005
    Publication date: December 1, 2005
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroshi Kobayashi, Hirofumi Shouji, Masaki Imamura, Yoshitomo Ozaki, Naoyuki Tsuchida