Patents by Inventor Hirofumi Yasuda

Hirofumi Yasuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7585811
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a noble metal particle (2) and a porous carrier (1) in a reversed micelle substantially simultaneously; and a step of precipitating a transition metal particle (3) in the reversed micelle. By this method, it is possible to obtain catalyst powder which restricts an aggregation of the noble metal particles even at a high temperature and is excellent in a catalytic activity.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: September 8, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masanori Nakamura, Katsuo Suga, Toru Sekiba, Hironori Wakamatsu, Kazuyuki Shiratori, Hirofumi Yasuda
  • Publication number: 20090111688
    Abstract: An object is to maintain an effect of enhancing activity of noble metal particles by transition metal without increasing production cost and an environmental load. An exhaust gas purifying catalyst 1 is composed of: noble metal particles 2; first compounds 3 which contact the noble metal particles 2 and suppress movement of the noble metal particles 2; and second compounds 4 which contain the noble metal particles 2 and the first compounds 3, suppress the movement of the noble metal particles 2, and suppress coagulation of the first compounds 3 following mutual contact of the first compounds 3, wherein the first compounds 3 support the noble metal particles 2, and simplexes or aggregates of the first compounds 3 supporting the noble metal particles 2 are included in section partitioned by the second compounds 4.
    Type: Application
    Filed: October 31, 2006
    Publication date: April 30, 2009
    Inventors: Masanori Nakamura, Katsuo Suga, Hironori Wakamatsu, Kazuyuki Shiratori, Hirofumi Yasuda, Makoto Aoyama, Jun Ikezawa
  • Publication number: 20090088320
    Abstract: An exhaust gas purifying catalyst including: a plurality of first compounds 5 which have precious metal particles 3 supported thereon and are formed into a particle shape; and second compounds 7 which are arranged among the plurality of first compounds 5 and separate the first compounds 5 from one another, wherein pore volumes of the precious metal particles 3, the first compounds 5 and the second compounds 7 are 0.24 to 0.8 cm3/g.
    Type: Application
    Filed: April 12, 2007
    Publication date: April 2, 2009
    Inventors: Hiroto Kikuchi, Masanori Nakamura, Hironori Wakamatsu, Hideaki Morisaka, Hirofumi Yasuda, Katsuo Suga, Kazuyuki Shiratori, Kenji Uesugi, Toshiharu Miyamura
  • Publication number: 20080318769
    Abstract: A catalyst (1) for use in exhaust emission control that improves catalytic activity and reduces the amount of noble metal used and method for making such a catalyst (1). The catalyst (1) includes a noble metal first constituent (2); a transition metal compound second constituent (3), part or all of which forms a complex with the noble metal; a third constituent element (4) that is in contact with the complex and has an electronegativity of 1.5 or less; and a porous carrier (5) that supports the noble metal, the transition metal compound and the third constituent element (4), and that is such that part or all of which forms a complex oxide with the third constituent element (4).
    Type: Application
    Filed: August 4, 2005
    Publication date: December 25, 2008
    Inventors: Hironori Wakamatsu, Hirofumi Yasuda, Kazuyuki Shiratori, Masanori Nakamura, Toru Sekiba, Katsuo Suga
  • Publication number: 20080139382
    Abstract: A catalyst for purifying exhaust gas that provides a superior catalytic performance even at a high temperature by increasing the durability of the promoter. The catalyst for purifying exhaust gas includes a promoter clathrate wherein a promoter component particle is covered with a high heat-resistant oxide. A promoter active species is contained in the promoter clathrate. The catalytic active species are located adjacent to the promoter clathrates. The catalytic active species has a precious metallic particle having a catalyst activity, a metallic oxide particle for bearing the precious metallic particle and a metallic oxide placed around the metallic oxide particle and the precious metallic particle.
    Type: Application
    Filed: September 26, 2007
    Publication date: June 12, 2008
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hideaki Morisaka, Hironori Wakamatsu, Masanori Nakamaura, Kazuyuki Shiratori, Hirofumi Yasuda, Katsuo Suga
  • Publication number: 20070244001
    Abstract: A catalyst which suppresses aggregation of metal particles and which has superior heat resistance. In the catalyst, metal particles are supported by a surface of a carrier while being partially embedded therein.
    Type: Application
    Filed: July 5, 2005
    Publication date: October 18, 2007
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Hironori Wakamatsu, Hirofumi Yasuda, Kazuyuki Shiratori, Masanori Nakamura, Katsuo Suga, Toru Sekiba
  • Publication number: 20070203021
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a noble metal particle (2) and a porous carrier (1) in a reversed micelle substantially simultaneously; and a step of precipitating a transition metal particle (3) in the reversed micelle. By this method, it is possible to obtain catalyst powder which restricts an aggregation of the noble metal particles even at a high temperature and is excellent in a catalytic activity.
    Type: Application
    Filed: February 10, 2005
    Publication date: August 30, 2007
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Masanori Nakamura, Katsuo Suga, Toru Sekiba, Hironori Wakamatsu, Kazuyuki Shiratori, Hirofumi Yasuda
  • Publication number: 20070167319
    Abstract: A high heat-resistive catalyser formed as a catalyst including a composite particle composed of a noble metal particle and a co-catalytic metal compound particle contacting, as a metal or as an oxide, with the noble metal particle, and a substrate carrying the noble metal particle and the co-catalytic metal compound particle, is produced by having a noble metal salt aqueous solution and a co-catalytic metal salt aqueous solution concurrently provided in a reverse micelle preparing reverse micellar solution containing a noble metal precursor and a co-catalytic metal precursor, and having a substrate carrying a composite particle comprising the noble metal precursor and the co-catalytic metal precursor concurrently reduced as a noble metal particle and a co-catalytic metal particle, respectively.
    Type: Application
    Filed: December 2, 2004
    Publication date: July 19, 2007
    Inventors: Kazuyuki Shiratori, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Hirofumi Yasuda
  • Publication number: 20070155626
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating any one of a noble metal particle (5) and a transition metal particle (10) in a reversed micelle (1); a step of precipitating, in the reversed micelle (1) in which any one of the noble metal particle (5) and the transition metal particle (10) is precipitated, a porous support material (7) which supports the noble metal particle (5) and the transition metal particle (10); and a step of precipitating the other of the noble metal particle (5) and the transition metal particle (10) in the reversed micelle (1) in which any one of the noble metal particle (5) and the transition metal particle (10) is precipitated. By this method, it is possible to obtain catalyst powder capable of maintaining initial purification performance thereof even if being exposed to the high temperature.
    Type: Application
    Filed: February 8, 2005
    Publication date: July 5, 2007
    Inventors: Hirofumi Yasuda, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Kazuyuki Shiratori, Toru Sekiba
  • Publication number: 20070155625
    Abstract: A catalyst producing method comprises preparing reverse micellar solution including an aqueous solution containing at least a noble metal element as a catalytic active component, and carrying the catalytic active component by a substrate to establish them into a catalyst precursor; and spraying the emulsion solution containing the catalyst precursor in an inert gas atmosphere to obtain a dried catalyst precursor, and firing the obtained dried catalyst precursor in an air atmosphere. A catalyst is obtained by the catalyst producing method.
    Type: Application
    Filed: December 2, 2004
    Publication date: July 5, 2007
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hirofumi Yasuda, Katsuo Suga, Masanori Nakamura, Kazuyuki Shiratori, Hironori Wakamatsu
  • Publication number: 20060170322
    Abstract: An electron emission element includes: a pair of electrodes facing each other with a predetermined gap therebetween; a conductive thin film which bridges across the electrodes and has a narrow region in which a part of at least one side of two sides of an area bridging across the electrodes is close to the other side; and an electron emission section formed in the narrow region of the conductive thin film. In here, the narrow region is narrower than the width between the electrodes in a direction orthogonal to a direction where the electrodes face each other.
    Type: Application
    Filed: December 27, 2005
    Publication date: August 3, 2006
    Inventor: Hirofumi Yasuda
  • Publication number: 20050221978
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a carrier in a reversed micelle, and a step of precipitating at least one of a noble metal particle and a transition metal particle in the reversed micelle in which the carrier is precipitated. By this method, it is possible to obtain catalyst powder excellent in heat resistance and high in the catalytic activity.
    Type: Application
    Filed: March 15, 2005
    Publication date: October 6, 2005
    Inventors: Kazuyuki Shiratori, Toru Sekiba, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Hirofumi Yasuda
  • Publication number: 20050215429
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a transition metal particle and a base-metal compound in a reversed micelle substantially simultaneously, and a step of precipitating a noble metal particle in the reversed micelle. By this method, it is possible to obtain catalyst powder which restricts an aggregation of noble metal particles even at the high temperature and is excellent in the catalytic activity.
    Type: Application
    Filed: March 15, 2005
    Publication date: September 29, 2005
    Inventors: Hironori Wakamatsu, Masanori Nakamura, Kazuyuki Shiratori, Hirofumi Yasuda, Katsuo Suga, Toru Sekiba
  • Patent number: 6232376
    Abstract: A moisture curable polyolefin composition comprising: (a) a polyolefin, and for each 100 parts by weight of component (a), (b) 0.1 to 10 parts by weight of an unsaturated alkoxy silane; (c) 0.01 to 2 parts by weight of an organic peroxide; (d) 0.01 to 2 parts by weight of a silanol condensation catalyst; (e) 0.02 to 2 parts by weight of a hindered amine stabilizer; (f) 0.01 to 1 part by weight of a hindered phenol antioxidant; and (g) 0.01 to 1 part by weight of an arylamine antioxidant.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: May 15, 2001
    Assignee: Nippon Unicar Company Ltd.
    Inventors: Kiroku Tsukada, Makoto Okazawa, Ariyoshi Ohki, Hirofumi Yasuda, Yasuo Nomura, Koji Ishihara
  • Patent number: 5612557
    Abstract: A semiconductor device includes a substrate, a first insulating film carried on the substrate, a first conductor layer having sides and carried on the first insulting film, and an interlayer insulating film overlying the first conductor layer and the first insulating film. The interlayer insulating film includes a top portion which overlies the first conductor layer and a pair of sidewall portions which overlie the first insulating film and are adjacent to and in contact with the sides of the first conductor layer. The semiconductor also includes a second conductor layer which extends from overlying part of the top portion of the interlayer insulating film to and in contact with an exposed portion of the substrate and adjacent the first insulating film wherein a portion of the second conductor layer is in contact with a thinned portion of the interlayer insulating film.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 18, 1997
    Assignee: Seiko Epson Corporation
    Inventors: Toshihiko Kondo, Kazuo Tanaka, Hirofumi Yasuda
  • Patent number: 5345420
    Abstract: A semiconductor memory device for reading data from a selected memory cell. The memory cells are arranged in an array. First bit lines and word lines, coupled to the memory cells, are arranged in a matrix. The word lines select the selected cell. An amplification circuit amplifies the current passing through the selected memory cell and is coupled to the first bit line. A second bit line is coupled to the amplification circuit and carries the amplified current. A sensing circuit coupled to the second bit line senses the current on the second bit line. As a result, the current passing through the selected memory cell is detected.
    Type: Grant
    Filed: May 25, 1993
    Date of Patent: September 6, 1994
    Assignee: Seiko Epson Corporation
    Inventors: Hirofumi Yasuda, Akira Uematsu
  • Patent number: 5260899
    Abstract: A semiconductor memory device for reading data from a selected memory cell. The memory cells are arranged in an array. First bit lines and word lines, coupled to the memory cells, are arranged in a matrix. The word lines select the selected cell. An amplification circuit amplifies the current passing through the selected memory cell and is coupled to the first bit. A second bit line is coupled to the amplification circuit and carries the amplified current. A sensing circuit coupled to the second bit line senses the current on the second bit line. As a result, the current passing through the selected memory cell is detected.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: November 9, 1993
    Assignee: Seiko Epson Corporation
    Inventors: Hirofumi Yasuda, Akira Uematsu
  • Patent number: 5191402
    Abstract: A semiconductor device includes a substrate, first insulating film carried on the substrate, first wiring layer carried on the first insulating film and an interlayer insulating film overlying the first wiring layer and first insulating film. The interlayer insulating film has a top portion overlying the first wiring layer and a pair of sidewall portions. The sidewall portions of the interlayer insulating film overlie the first insulating film and the sides of the first wiring layer. The sidewall portions have progressively increasing width in progressing towards the substrate. The device also includes a second wiring layer which extends from overlying part of the top portion of the interlayer insulating film to and in contact with an exposed portion of the substrate adjacent to the first insulating film.
    Type: Grant
    Filed: June 1, 1990
    Date of Patent: March 2, 1993
    Assignee: Seiko Epson Corporation
    Inventors: Toshihiko Kondo, Kazuo Tanaka, Hirofumi Yasuda
  • Patent number: 5101380
    Abstract: A semiconductor memory device for reading stored data from a selected memory cell in the semiconductor device to a sensing amplifier. An array of memory cells is arranged in a matrix, each memory cell including a MOS transistor. Word lines are organized to select groups of the MOS transistors. A plurality of first bit lines are arrayed in a matrix with the word lines. The word lines and bit lines together select the selected memory cell from the array. Each first bit line is coupled to either the source electrode or drain electrode of a plurality of MOS transistors. There is at least one second bit line. Each second bit line is selectively coupled to at least two corresponding first bit lines. A first bit line selection circuit selectively couples one of the first bit lines to a corresponding second bit line. A first power source line is coupled to the other of the source and drain of the array of the MOS transistors.
    Type: Grant
    Filed: May 23, 1990
    Date of Patent: March 31, 1992
    Assignee: Seiko Epson Corporation
    Inventors: Hirofumi Yasuda, Toshihiko Kondo, Kazuo Tanaka
  • Patent number: 4931996
    Abstract: A semiconductor memory device for reading stored data from a selected memory cell in the semiconductor device to a sensing amplifier. An array of memory cells is arranged in a matrix, each memory cell including a MOS transistor. Word lines are organized to select groups of the MOS transistors. A plurality of first bit lines are arrayed in a matrix with the word lines. The word lines and bit lines together select the selected memory cell from the array. Each first bit line is coupled to either the source electrode or drain electrode of a plurality of MOS transistors. There is at least one second bit line. Each second bit line is selectively coupled to at least two corresponding first bit lines. A first bit line selection circuit selectively couples one of the first bit lines to a corresponding second bit line. A first power source line is coupled to the other of the source and drain of the array of the MOS transistors.
    Type: Grant
    Filed: June 2, 1989
    Date of Patent: June 5, 1990
    Assignee: Seiko Epson Corporation
    Inventor: Hirofumi Yasuda