Patents by Inventor Hiroharu Ooyama

Hiroharu Ooyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9982545
    Abstract: The precipitation hardened martensitic stainless steel is characterized by containing, in percent by weight, 12.25 to 14.25% Cr, 7.5 to 8.5% Ni, 1.0 to 2.5% Mo, 0.05% or less C, 0.2% or less Si, 0.4% or less Mn, 0.03% or less P, 0.005% or less S, 0.008% or less N, 0.90 to 2.25% Al, the balance substantially being Fe, and the total content of Cr and Mo being 14.25 to 16.75%. A turbine moving blade and a steam turbine are manufactured by using this martensitic stainless steel.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: May 29, 2018
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yuichi Hirakawa, Yoshikuni Kadoya, Hiroharu Ooyama, Tatsuya Furukawa, Naoto Tochitani
  • Publication number: 20150315921
    Abstract: The precipitation hardened martensitic stainless steel is characterized by containing, in percent by weight, 12.25 to 14.25% Cr, 7.5 to 8.5% Ni, 1.0 to 2.5% Mo, 0.05% or less C, 0.2% or less Si, 0.4% or less Mn, 0.03% or less P, 0.005% or less S, 0.008% or less N, 0.90 to 2.25% Al, the balance substantially being Fe, and the total content of Cr and Mo being 14.25 to 16.75%. A turbine moving blade and a steam turbine are manufactured by using this martensitic stainless steel.
    Type: Application
    Filed: July 14, 2015
    Publication date: November 5, 2015
    Inventors: Yuichi HIRAKAWA, Yoshikuni KADOYA, Hiroharu OOYAMA, Tatsuya FURUKAWA, Naoto TOCHITANI
  • Patent number: 8851844
    Abstract: A stationary blade and a steam turbine capable of reducing self-excited vibrations with a simple configuration are provided. A stationary blade has a cavity, extending in a blade-width direction, formed therein and slits communicating between the cavity and the outside. A wave-shaped plate spring that is in sliding contact with at least one of a pressure-side member and a suction-side member is provided between the pressure-side member, which is a portion on the pressure side of the cavity, and the suction-side member, which is a portion on the suction side of the cavity. When the stationary blade is elastically deformed, the wave-shaped plate spring causes friction between itself and at least one of the pressure-side member and the suction-side member. This friction attenuates relative positional displacement between the pressure-side member and the suction-side member. Thus, self-excited vibrations occurring at the stationary blade can be reduced.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: October 7, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hiroyuki Yamashita, Yasutomo Kaneko, Hiroharu Ooyama
  • Patent number: 8784046
    Abstract: The turbine is provided with a blade (50) and a structure body (11) which rotates relatively with respect to the blade (50). A stepped part (52A) having a step surface (53A) is installed at one of the leading end of the blade (50) and the structure body (11) corresponding to the leading end thereof, while a seal fin (15A) which extends toward the stepped part (52A) to form a small space (H) is installed at the other of them. A cavity (C1) is formed between the blade (50) and the structure body (11) and also between the seal fin (15A) and the partition wall which faces thereto in the rotating shaft direction of the structure body (11) on the upstream side. When a distance of the cavity (C1) between the partition wall and the seal fin (15A) is given as a cavity width (W), and a distance between the seal fin (15A) and the end edge (55) of the stepped part (52A) in the rotating shaft direction on the upstream side is given as (L), at least one of the distances (L) satisfies the following formula (1). 0.7H?L?0.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: July 22, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yoshihiro Kuwamura, Kazuyuki Matsumoto, Hiroharu Ooyama, Yoshinori Tanaka, Asaharu Matsuo
  • Publication number: 20120121393
    Abstract: The turbine is provided with a blade (50) and a structure body (11) which rotates relatively with respect to the blade (50). A stepped part (52A) having a step surface (53A) is installed at one of the leading end of the blade (50) and the structure body (11) corresponding to the leading end thereof, while a seal fin (15A) which extends toward the stepped part (52A) to form a small space (H) is installed at the other of them. A cavity (C1) is formed between the blade (50) and the structure body (11) and also between the seal fin (15A) and the partition wall which faces thereto in the rotating shaft direction of the structure body (11) on the upstream side. When a distance of the cavity (C1) between the partition wall and the seal fin (15A) is given as a cavity width (W), and a distance between the seal fin (15A) and the end edge (55) of the stepped part (52A) in the rotating shaft direction on the upstream side is given as (L), at least one of the distances (L) satisfies the following formula (1). 0.7H?L?0.
    Type: Application
    Filed: October 4, 2010
    Publication date: May 17, 2012
    Inventors: Yoshihiro Kuwamura, Kazuyuki Matsumoto, Hiroharu Ooyama, Yoshinori Tanaka, Asaharu Matsuo
  • Publication number: 20100329847
    Abstract: A stationary blade and a steam turbine capable of reducing self-excited vibrations with a simple configuration are provided. A stationary blade has a cavity, extending in a blade-width direction, formed therein and slits communicating between the cavity and the outside. A wave-shaped plate spring that is in sliding contact with at least one of a pressure-side member and a suction-side member is provided between the pressure-side member, which is a portion on the pressure side of the cavity, and the suction-side member, which is a portion on the suction side of the cavity. When the stationary blade is elastically deformed, the wave-shaped plate spring causes friction between itself and at least one of the pressure-side member and the suction-side member. This friction attenuates relative positional displacement between the pressure-side member and the suction-side member. Thus, self-excited vibrations occurring at the stationary blade can be reduced.
    Type: Application
    Filed: October 24, 2008
    Publication date: December 30, 2010
    Inventors: Hiroyuki Yamashita, Yasutomo Kaneko, Hiroharu Ooyama
  • Publication number: 20060118215
    Abstract: The precipitation hardened martensitic stainless steel is characterized by containing, in percent by weight, 12.25 to 14.25% Cr, 7.5 to 8.5% Ni, 1.0 to 2.5% Mo, 0.05% or less C, 0.2% or less Si, 0.4% or less Mn, 0.03% or less P, 0.005% or less S, 0.008% or less N, 0.90 to 2.25% Al, the balance substantially being Fe, and the total content of Cr and Mo being 14.25 to 16.75%. A turbine moving blade and a steam turbine are manufactured by using this martensitic stainless steel.
    Type: Application
    Filed: May 24, 2005
    Publication date: June 8, 2006
    Inventors: Yuichi Hirakawa, Yoshikuni Kadoya, Hiroharu Ooyama, Tatsuya Furukawa, Naoto Tochitani