Patents by Inventor Hirohiko Ishikawa

Hirohiko Ishikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10059575
    Abstract: A hydraulic control device for a forklift includes: a plurality of hydraulic mechanisms including a lifting/lowering hydraulic cylinder and a tilting hydraulic cylinder; a hydraulic pump; an electric motor; a discharge control mechanism; a proportional valve; a flow rate control valve; and a controller. When the lifting/lowering hydraulic cylinder performs a lowering operation of the fork and a hydraulic mechanism other than the lifting/lowering hydraulic cylinder simultaneously performs a further operation, the controller controls an open degree of the proportional valve in accordance with a rotation speed difference of a required lowering operation rotation speed for the hydraulic pump, which is required to perform the lowering operation at an instructed speed that is in accordance with an operation amount of the lifting/lowering control member, and a required further operation rotation speed for the hydraulic pump, which is required to perform the further operation.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: August 28, 2018
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuki Ueda, Tsutomu Matsuo, Takashi Uno, Hirohiko Ishikawa
  • Patent number: 9957982
    Abstract: An electromagnetic switching valve, for which the maximum opening is set to be small, is disposed on piping between a lift cylinder and a hydraulic pump motor. A pilot check valve, for which the maximum opening is set to be larger than the electromagnetic switching valve, is disposed on piping, different from the piping, between the lift cylinder and the hydraulic pump motor. In addition, during lowering operations, first, the electromagnetic switching valve is opened, and then after the same is opened, the pilot check valve is opened after a prescribed time has passed. Thus, the shock generated when lowering an object to be raised/lowered is reduced and a fork is operated quickly.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: May 1, 2018
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuki Ueda, Tsutomu Matsuo, Hirohiko Ishikawa
  • Patent number: 9771250
    Abstract: A hydraulic control device for a forklift includes a hydraulic pump, a single electric motor for driving the hydraulic pump, an outflow control mechanism provided between a lift cylinder and the hydraulic pump, a flow control valve provided between the outflow control mechanism and a draining portion, and a controller. When a lowering operation of a fork and either forward or rearward mast tilting operations of a mast are performed at the same time, the controller controls the electric motor based on a target speed of the hydraulic pump. The flow control valve controls the flow rate of hydraulic fluid from the lift cylinder to the hydraulic pump and the flow rate from the lift cylinder to the draining portion in accordance with the difference between the actual rotation speed of the hydraulic pump and the target rotation speed of the hydraulic pump.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: September 26, 2017
    Assignees: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, NISHINA INDUSTRIAL CO., LTD.
    Inventors: Yuki Ueda, Tsutomu Matsuo, Hirohiko Ishikawa, Tetsuya Goto, Junichi Morita, Toshinari Fukatsu, Akira Nakajo, Ryo Yazawa
  • Patent number: 9631613
    Abstract: A hydraulic drive device for cargo handling vehicle has: a tank; a pump for drawing in a hydraulic oil from the tank and supplying the hydraulic oil to hydraulic cylinders; an electric motor for driving the pump; a solenoid-controlled proportional valve disposed between an inlet port of the pump and a bottom chamber of an up-and-down hydraulic cylinder and configured to open with a valve travel depending upon a control input of a descent control of an up-and-down control member; a pressure compensation valve disposed between a branch portion located between the pump and the solenoid-controlled proportional valve and the tank and configured to open with a valve travel depending upon a pressure difference between pressures upstream and downstream of the solenoid-controlled proportional valve; and a valve disposed between the pressure compensation valve and the tank and configured to be switched between an open position and a close position.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: April 25, 2017
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuki Ueda, Tsutomo Matsuo, Takashi Uno, Hirohiko Ishikawa, Naoya Yokomachi
  • Patent number: 9469515
    Abstract: An outlet port of a hydraulic pump/motor and a bottom chamber of a lift cylinder are connected to each other by a hydraulic fluid passage. A hydraulic fluid passage that is connected to a hydraulic fluid tank is formed to branch off the hydraulic fluid passage. A flow control valve controls the hydraulic fluid delivered from the lift cylinder when the fork is lowered, thereby regulating the flow rate of hydraulic fluid supplied to the hydraulic pump/motor and the flow rate of hydraulic fluid supplied to the hydraulic fluid tank. If regenerative operation can be performed, the flow control valve is closed and hydraulic fluid is delivered to the hydraulic pump/motor. If regenerative operation cannot be performed, the flow control valve is opened and hydraulic fluid is delivered to the hydraulic fluid tank. In either case, the fork can be lowered at an instructed speed.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: October 18, 2016
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Tsutomu Matsuo, Hirohiko Ishikawa, Yuki Ueda, Tetsuya Goto, Junichi Morita
  • Publication number: 20160002017
    Abstract: A hydraulic control device for a forklift includes: a plurality of hydraulic mechanisms including a lifting/lowering hydraulic cylinder and a tilting hydraulic cylinder; a hydraulic pump; an electric motor; a discharge control mechanism; a proportional valve; a flow rate control valve; and a controller. When the lifting/lowering hydraulic cylinder performs a lowering operation of the fork and a hydraulic mechanism other than the lifting/lowering hydraulic cylinder simultaneously performs a further operation, the controller controls an open degree of the proportional valve in accordance with a rotation speed difference of a required lowering operation rotation speed for the hydraulic pump, which is required to perform the lowering operation at an instructed speed that is in accordance with an operation amount of the lifting/lowering control member, and a required further operation rotation speed for the hydraulic pump, which is required to perform the further operation.
    Type: Application
    Filed: February 12, 2014
    Publication date: January 7, 2016
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuki UEDA, Tsutomu MATSUO, Takashi UNO, Hirohiko ISHIKAWA
  • Publication number: 20150300380
    Abstract: An electromagnetic switching valve, for which the maximum opening is set to be small, is disposed on piping between a lift cylinder and a hydraulic pump motor. A pilot check valve, for which the maximum opening is set to be larger than the electromagnetic switching valve, is disposed on piping, different from the piping, between the lift cylinder and the hydraulic pump motor. In addition, during lowering operations, first, the electromagnetic switching valve is opened, and then after the same is opened, the pilot check valve is opened after a prescribed time has passed. Thus, the shock generated when lowering an object to be raised/lowered is reduced and a fork is operated quickly.
    Type: Application
    Filed: October 18, 2012
    Publication date: October 22, 2015
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuki Ueda, Tsutomu Matsuo, Hirohiko Ishikawa
  • Publication number: 20150013324
    Abstract: An outlet port of a hydraulic pump/motor and a bottom chamber of a lift cylinder are connected to each other by a hydraulic fluid passage. A hydraulic fluid passage that is connected to a hydraulic fluid tank is formed to branch off the hydraulic fluid passage. A flow control valve controls the hydraulic fluid delivered from the lift cylinder when the fork is lowered, thereby regulating the flow rate of hydraulic fluid supplied to the hydraulic pump/motor and the flow rate of hydraulic fluid supplied to the hydraulic fluid tank. If regenerative operation can be performed, the flow control valve is closed and hydraulic fluid is delivered to the hydraulic pump/motor. If regenerative operation cannot be performed, the flow control valve is opened and hydraulic fluid is delivered to the hydraulic fluid tank. In either case, the fork can be lowered at an instructed speed.
    Type: Application
    Filed: January 16, 2013
    Publication date: January 15, 2015
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Tsutomu Matsuo, Hirohiko Ishikawa, Yuki Ueda, Tetsuya Goto, Junichi Morita
  • Publication number: 20140369866
    Abstract: A hydraulic drive device for cargo handling vehicle has: a tank; a pump for drawing in a hydraulic oil from the tank and supplying the hydraulic oil to hydraulic cylinders; an electric motor for driving the pump; a solenoid-controlled proportional valve disposed between an inlet port of the pump and a bottom chamber of an up-and-down hydraulic cylinder and configured to open with a valve travel depending upon a control input of a descent control of an up-and-down control member; a pressure compensation valve disposed between a branch portion located between the pump and the solenoid-controlled proportional valve and the tank and configured to open with a valve travel depending upon a pressure difference between pressures upstream and downstream of the solenoid-controlled proportional valve; and a valve disposed between the pressure compensation valve and the tank and configured to be switched between an open position and a close position.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 18, 2014
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuki UEDA, Tsutomo MATSUO, Takashi UNO, Hirohiko ISHIKAWA, Naoya YOKOMACHI
  • Publication number: 20140331662
    Abstract: A hydraulic control device for a forklift includes a hydraulic pump, a single electric motor for driving the hydraulic pump, an outflow control mechanism provided between a lift cylinder and the hydraulic pump, a flow control valve provided between the outflow control mechanism and a draining portion, and a controller. When a lowering operation of a fork and either forward or rearward mast tilting operations of a mast are performed at the same time, the controller controls the electric motor based on a target speed of the hydraulic pump. The flow control valve controls the flow rate of hydraulic fluid from the lift cylinder to the hydraulic pump and the flow rate from the lift cylinder to the draining portion in accordance with the difference between the actual rotation speed of the hydraulic pump and the target rotation speed of the hydraulic pump.
    Type: Application
    Filed: December 10, 2012
    Publication date: November 13, 2014
    Applicants: NISHINA INDUSTRIAL CO., LTD., KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuki Ueda, Tsutomu Matsuo, Hirohiko Ishikawa, Tetsuya Goto, Junichi Morita, Toshinari Fukatsu, Akira Nakajo, Ryo Yazawa
  • Patent number: 7851972
    Abstract: It is an subject of the present invention to provide a vibration actuator in which a plurality of rotors can be driven by a single vibration unit. When a composite vibrator (2) is driven to generate a composite vibration combining a plurality of vibrations, a first stator (3) and a second stator (4) vibrate, thereby causing elliptical movements in corner portions (8) and (9) of the first stator (3) and the second stator (4), respectively. As a result, a first rotor (A) abutting onto and pressurized against the corner portion (8) of the first stator (3) and a second rotor (B) abutting onto and pressurized against the corner portion (9) of the second stator (4) are rotated at the same time. Further, in this case, by selecting vibration modes of the plurality of vibrations constituting the composite vibration, the two rotors (A) and (B) can be rotated in the same direction or in opposite directions with respect to each other.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: December 14, 2010
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Tokyo Institute of Technology
    Inventors: Masaki Takasan, Hirohiko Ishikawa, Kazuo Seiki, Kentaro Nakamura, Sadayuki Ueha
  • Patent number: 7786650
    Abstract: Provided is an ultrasonic motor capable of realizing high torque. When two terminals are selected from a first terminal (31t), a second terminal (32t), and a third terminal (33t) of a vibrator (3), and AC voltages whose phases are shifted by 90 degrees relative to each other are respectively applied through both of those two terminals, vibration is generated in the stator vibration body (S), and elliptical vibration in a plane corresponding to the selected two terminals is generated at each of a step (9) of a first stator (2) and a corner (11) of a second stator (10), which are in contact with a rotor (6). Since the first stator (2) and the second stator (10) form the single stator vibration body (S), the step (9) of the first stator (2) and the corner (11) of the second stator (10) vibrate in the same vibration mode, rotational force is transmitted from both the step (9) of the first stator (2) and the corner (11) of the second stator (10), and the rotor (6) rotates with high torque.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: August 31, 2010
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Masaki Takasan, Tsuyoshi Kodera, Hirohiko Ishikawa, Koji Maeda, Kazuo Seiki
  • Patent number: 7638927
    Abstract: Provided is a vibration actuator in which a plurality of rotors can be driven by a single vibration unit. Two rotors (A) and (B) are attracted toward corresponding stators to be contacted with and pressurized against the corresponding stators (3) and (4), respectively, through a tension of a wire member (8). A composite vibration combining a plurality of vibrations is generated by a composite vibrator (2) to cause elliptical movements in corner portions of the stators (3) and (4). As a result, the two rotors (A) and (B) abutting onto and pressurized against the two stators (3) and (4) are rotated about rotation centers (C1) and (C2) thereof, respectively, at the same time.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: December 29, 2009
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Masaki Takasan, Hirohiko Ishikawa, Kazuo Seiki, Tsuyoshi Kodera, Kitaru Iwata
  • Publication number: 20090267450
    Abstract: It is an subject of the present invention to provide a vibration actuator in which a plurality of rotors can be driven by a single vibration unit. When a composite vibrator (2) is driven to generate a composite vibration combining a plurality of vibrations, a first stator (3) and a second stator (4) vibrate, thereby causing elliptical movements in corner portions (8) and (9) of the first stator (3) and the second stator (4), respectively. As a result, a first rotor (A) abutting onto and pressurized against the corner portion (8) of the first stator (3) and a second rotor (B) abutting onto and pressurized against the corner portion (9) of the second stator (4) are rotated at the same time. Further, in this case, by selecting vibration modes of the plurality of vibrations constituting the composite vibration, the two rotors (A) and (B) can be rotated in the same direction or in opposite directions with respect to each other.
    Type: Application
    Filed: February 21, 2007
    Publication date: October 29, 2009
    Inventors: Masaki Takasan, Hirohiko Ishikawa, Kazuo Seiki, Kentaro Nakamura, Sadayuki Ueha
  • Publication number: 20090267455
    Abstract: Provided is a vibration actuator in which a plurality of rotors can be driven by a single vibration unit. Two rotors (A) and (B) are attracted toward corresponding stators to be contacted with and pressurized against the corresponding stators (3) and (4), respectively, through a tension of a wire member (8). A composite vibration combining a plurality of vibrations is generated by a composite vibrator (2) to cause elliptical movements in corner portions of the stators (3) and (4). As a result, the two rotors (A) and (B) abutting onto and pressurized against the two stators (3) and (4) are rotated about rotation centers (C1) and (C2) thereof, respectively, at the same time.
    Type: Application
    Filed: February 14, 2007
    Publication date: October 29, 2009
    Inventors: Masaki Takasan, Hirohiko Ishikawa, Kazuo Seiki, Tsuyoshi Kodera, Kitaru Iwata
  • Publication number: 20090051249
    Abstract: Provided is an ultrasonic motor capable of realizing high torque. When two terminals are selected from a first terminal (31t), a second terminal (32t), and a third terminal (33t) of a vibrator (3), and AC voltages whose phases are shifted by 90 degrees relative to each other are respectively applied through both of those two terminals, vibration is generated in the stator vibration body (S), and elliptical vibration in a plane corresponding to the selected two terminals is generated at each of a step (9) of a first stator (2) and a corner (11) of a second stator (10), which are in contact with a rotor (6). Since the first stator (2) and the second stator (10) form the single stator vibration body (S), the step (9) of the first stator (2) and the corner (11) of the second stator (10) vibrate in the same vibration mode, rotational force is transmitted from both the step (9) of the first stator (2) and the corner (11) of the second stator (10), and the rotor (6) rotates with high torque.
    Type: Application
    Filed: July 27, 2006
    Publication date: February 26, 2009
    Inventors: Masaki Takasan, Tsuyoshi Kodera, Hirohiko Ishikawa, Koji Maeda, Kazuo Seiki