Patents by Inventor Hirohisa Haiji

Hirohisa Haiji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5669989
    Abstract: A Ni--Fe magnetic alloy consists essentially of: 77 to 80 wt. % Ni, 3.5 to 5 wt. % Mo, 1.5 to 3 wt. % Cu, 0.1 to 1.1 wt. % Mn, 0.1 wt. % or less Cr, 0.003 wt. % or less S, 0.01 wt. % or less P, 0.005 wt. % or less 0, 0.003 wt. % or less N, 0.02 wt. % or less C, 0.001 to 0.05 wt. % Al, 1 wt. % or less Si, 2.6-6 of the weight ratio of Ca to S, (Ca/S), and the balance being Fe and inevitable impurities, satisfies an equation of 3.2.ltoreq.(2.02.times.?Ni!-11.13.times.?Mo!-1.25.times.?Cu!-5.03.times.?M n!)/(2.13.times.?Fe!).ltoreq.3.8; and has a Mo segregation ratio defined by a seregration equation satisfying 5% or less, the seregration equation being .vertline.(Mo content in a segregation region-Mo average content)/(Mo average content).vertline..times.100%. A method for producing a magnetic Ni--Fe alloy comprises the steps of: a first heating step of heating an alloy ingot to 1200.degree. to 1300.degree. C. for 10 to 30 hrs; slabbing the heated ingot at a finishing temperature of 950.degree. C.
    Type: Grant
    Filed: October 19, 1995
    Date of Patent: September 23, 1997
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Shinichi Okimoto, Naokazu Yamamura, Tetsuo Yamamoto, Hirohisa Haiji
  • Patent number: 5525164
    Abstract: A Ni--Fe magnetic alloy consists essentially of:77 to 80 wt. % Ni, 3.5 to 5 wt. % Mo, 1.5 to 3 wt. % Cu, 0.1 to 1.1 wt. % Mn, 0.1 wt. % or less Cr, 0.003 wt. % or less S, 0.01 wt. % or less P, 0.005 wt. % or less O, 0.003 wt. % or less N, 0.02 wt. % or less C, 0.001 to 0.05 wt. % Al, 1 wt. % or less Si, 2.6-6 of the weight ratio of Ca to S, (Ca/S), and the balance being Fe and inevitable impurities, satisfies an equation of 3.2.ltoreq.(2.02.times.[Ni]-11.13.times.[Mo]-1.25.times.[Cu]-5.03.times.[M n])/(2.13.times.[Fe]).ltoreq.3.8; and has a Mo segregation ratio defined by a seregration equation satisfying 5% or less, the seregration equation being .vertline.(Mo content in a segregation region-Mo average content)/(Mo average content).vertline..times.100%.A method for producing a magnetic Ni--Fe alloy comprises the steps of: a first heating step of heating an alloy ingot to 1200.degree. to 1300.degree. C. for 10 to 30 hrs; slabbing the heated ingot at a finishing temperature of 950.degree. C.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: June 11, 1996
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Shinichi Okimoto, Naokazu Yamamura, Tetsuo Yamamoto, Hirohisa Haiji
  • Patent number: 5500057
    Abstract: A Ni-Fe magnetic alloy consists essentially of:77 to 80 wt. % Ni, 3.5 to 5 wt. % Mo, 1.5 to 3 wt. % Cu, 0.1 to 1.1 wt. % Mn, 0.1 wt. % or less Cr, 0.003 wt. % or less S, 0.01 wt. % or less P, 0.005 wt. % or less 0, 0.003 wt. % or less N, 0.02 wt. % or less C, 0.001 to 0.05 wt. % Al, 1 wt. % or less Si, 2.6-6 of the weight ratio of Ca to S, (Ca/S), and the balance being Fe and inevitable impurities, satisfies an equation of 3.2.ltoreq.(2.02.times.[Ni]-11.13.times.[Mo]-1.25.times.[Cu]-5.03.times.[M n])/ (2.13.times.[Fe]).ltoreq.3.8; and has a Mo segregation ratio defined by a seregration equation satisfying 5% or less, the seregration equation being .vertline.(Mo content in a segregation region-Mo average content)/ (Mo average content).vertline..times.100%.A method for producing a magnetic Ni-Fe alloy comprises the steps of: a first heating step of heating an alloy ingot to 1200.degree. to 1300.degree. C. for 10 to 30 hrs; slabbing the heated ingot at a finishing temperature of 950.degree. C.
    Type: Grant
    Filed: October 1, 1993
    Date of Patent: March 19, 1996
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Shinichi Okimoto, Naokazu Yamamura, Tetsuo Yamamoto, Hirohisa Haiji