Patents by Inventor Hirohisa OMOTO

Hirohisa OMOTO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11894171
    Abstract: Provided is an Al-containing hexagonal ferrite magnetic powder which produces an excellent durability-improving effect on a magnetic recording medium, wherein uniform pulverization of the magnetic powder can be easily achieved by dispersion treatment in preparation of a magnetic coating material even in cases where the magnetic powder has a small primary particle size or has a composition which is likely to produce hard secondary particles. The magnetic powder for a magnetic recording medium is an Al-containing hexagonal ferrite magnetic powder having an Al/Fe molar ratio of 0.030 to 0.200, and has a particle size distribution in which the volume ratio of particles having a particle size of 30 ?m or more as measured by a laser diffraction particle size distribution analyzer with a dispersion pressure of 100 kPa is 5.0% or less, and an activation volume Vact of 1800 nm3 or less.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: February 6, 2024
    Assignees: DOWA ELECTRONICS MATERIALS CO., LTD., FUJIFILM CORPORATION
    Inventors: Hirohisa Omoto, Shuji Kaneda, Satoshi Shiki, Hiroyuki Suzuki, Toshio Tada
  • Publication number: 20230081863
    Abstract: A hexagonal ferrite magnetic powder is significantly more useful for achieving simultaneously both the enhancement of the recording density and the enhancement of the SNR of a magnetic recording medium. The hexagonal ferrite magnetic powder contains Bi at a Bi/Fe molar ratio in a range of 0.035 or less, has a saturation magnetization ?s of 42.0 Am2/kg or more and a Dx volume calculated based on the crystallite diameters of 1,800 nm3 or less. A method for producing hexagonal ferrite magnetic powder includes a step of performing a treatment of immersing hexagonal ferrite magnetic powder containing Bi in a solution having dissolved therein a compound X that forms a complex with Bi, so as to elute a part of Bi existing in the hexagonal ferrite magnetic powder into the solution.
    Type: Application
    Filed: March 18, 2021
    Publication date: March 16, 2023
    Inventors: Masaki KOSHIKO, Akifumi ONODERA, Hirohisa OMOTO
  • Patent number: 11404190
    Abstract: Provided is a hexagonal ferrite magnetic powder for a magnetic recording medium, containing hexagonal ferrite magnetic particles having aluminum hydroxide adhered on the surface thereof, the hexagonal ferrite magnetic powder having an Al/Fe molar ratio of 0.030 to 0.200, a Co/Fe molar ratio of 0.002 to 0.030, and a Nb/Fe molar ratio of 0.005 to 0.050, and having an Fe site valence AFe of 3.015 to 3.040 as calculated by AFe=(3+2×[Co/Fe]+5×[Nb/Fe])/(1+[Co/Fe]+[Nb/Fe]) wherein [Co/Fe] represents the Co/Fe molar ratio and [Nb/Fe] represents the Nb/Fe molar ratio, and preferably having an activation volume Vact of 1400 to 1800 nm3. This magnetic powder simultaneously achieves an increase in magnetic characteristics including SNR of a magnetic recording medium and a further increase in durability thereof.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: August 2, 2022
    Assignees: DOWA ELECTRONICS MATERIALS CO., LTD., FUJIFILM CORPORATION
    Inventors: Hirohisa Omoto, Shuji Kaneda, Hiroyuki Suzuki, Toshio Tada
  • Publication number: 20200185135
    Abstract: Provided is a hexagonal ferrite magnetic powder for a magnetic recording medium, containing hexagonal ferrite magnetic particles having aluminum hydroxide adhered on the surface thereof, the hexagonal ferrite magnetic powder having an Al/Fe molar ratio of 0.030 to 0.200, a Co/Fe molar ratio of 0.002 to 0.030, and a Nb/Fe molar ratio of 0.005 to 0.050, and having an Fe site valence AFe of 3.015 to 3.040 as calculated by AFe=(3+2×[Co/Fe]+5×[Nb/Fe])/(1+[Co/Fe]+[Nb/Fe]) wherein [Co/Fe] represents the Co/Fe molar ratio and [Nb/Fe] represents the Nb/Fe molar ratio, and preferably having an activation volume Vact of 1400 to 1800 nm3. This magnetic powder simultaneously achieves an increase in magnetic characteristics including SNR of a magnetic recording medium and a further increase in durability thereof.
    Type: Application
    Filed: December 4, 2019
    Publication date: June 11, 2020
    Inventors: Hirohisa OMOTO, Shuji KANEDA, Hiroyuki SUZUKI, Toshio TADA
  • Publication number: 20200161035
    Abstract: Provided is an Al-containing hexagonal ferrite magnetic powder which produces an excellent durability-improving effect on a magnetic recording medium, wherein uniform pulverization of the magnetic powder can be easily achieved by dispersion treatment in preparation of a magnetic coating material even in cases where the magnetic powder has a small primary particle size or has a composition which is likely to produce hard secondary particles. The magnetic powder for a magnetic recording medium is an Al-containing hexagonal ferrite magnetic powder having an Al/Fe molar ratio of 0.030 to 0.200, and has a particle size distribution in which the volume ratio of particles having a particle size of 30 ?m or more as measured by a laser diffraction particle size distribution analyzer with a dispersion pressure of 100 kPa is 5.0% or less, and an activation volume Vact of 1800 nm3 or less.
    Type: Application
    Filed: November 14, 2019
    Publication date: May 21, 2020
    Inventors: Hirohisa OMOTO, Shuji KANEDA, Satoshi SHIKI, Hiroyuki SUZUKI, Toshio TADA
  • Patent number: 9741479
    Abstract: Provided is magnetic powder capable of enhancing simultaneously both magnetic characteristics including SNP and durability of a magnetic recording medium. The hexagonal ferrite magnetic powder for a magnetic recording medium has a Ba/Fe molar ratio of 8.0% or more, a Bi/Fe molar ratio of 2.5% or more and an Al/Fe molar ratio of from 3.0 to 6.0%. The magnetic powder preferably has an activation volume Vact of from 1,400 to 1,800 nm3. The magnetic powder particularly preferably has a coercive force Hc of from 159 to 279 kA/m (which is approximately from 2,000 to 3,500 Oe) and a coercivity distribution SFD of from 0.3 to 1.0. The magnetic powder may contain, as an element that substitutes an Fe site of the hexagonal ferrite, at least one kind selected from divalent transition metals M1 and tetravalent transition metals M2.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: August 22, 2017
    Assignees: DOWA ELECTRONICS MATERIALS CO., LTD., FUJIFILM CORPORATION
    Inventors: Kenji Masada, Hirohisa Omoto, Futoshi Nagashima, Daisuke Abe, Toshio Tada, Norihito Kasada
  • Publication number: 20160217817
    Abstract: A hexagonal ferrite magnetic powder for a magnetic recording medium, containing magnetic powder contains hexagonal ferrite particles having coated on the surface thereof an aluminum hydroxide material, having a Ba/Fe molar ratio of 0.080 or more, a Bi/Fe molar ratio of 0.025 or more, and an Al/Fe molar ratio of from 0.030 to 0.200. The magnetic powder preferably has an activation volume Vact of from 1,300 to 2,000 nm3. The magnetic powder particularly preferably has a coercive force Hc of from 159 to 287 kA/m (approximately from 2,000 to 3,600 Oe) and a coercivity distribution SFD of from 0.3 to 1.0. The magnetic powder may contain one or two or more kinds of a divalent transition metal M1 and a tetravalent transition metal M2, as an element that replaces Fe of the hexagonal ferrite. The magnetic powder has improved magnetic characteristics including SNR and durability.
    Type: Application
    Filed: January 21, 2016
    Publication date: July 28, 2016
    Inventors: Kenji MASADA, Hirohisa OMOTO, Futoshi NAGASHIMA, Hiroyuki SUZUKI, Toshio TADA
  • Patent number: 9311947
    Abstract: A metal magnetic powder having a metal magnetic phase mainly composed of ferromagnetic elements, and composed of particles containing one or more kinds of elements selected from rare earth elements including Y, and Al, Si. And the method for producing the metal magnetic powder, including the steps of: eluting the non-magnetic components in the particles under an action of a reducing agent acting on the metal magnetic powder, in a solution containing a complexing agent capable of forming the complex with the non-magnetic components; and forming an oxide layer on the particles in the solution after eluting the non-magnetic components into the solution, without drying the particles.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: April 12, 2016
    Assignee: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Hirohisa Omoto, Takayuki Kikuchi, Toshihiko Ueyama
  • Publication number: 20150123026
    Abstract: Provided is magnetic powder capable of enhancing simultaneously both magnetic characteristics including SNP and durability of a magnetic recording medium. The hexagonal ferrite magnetic powder for a magnetic recording medium has a Ba/Fe molar ratio of 8.0% or more, a Bi/Fe molar ratio of 2.5% or more and an Al/Fe molar ratio of from 3.0 to 6.0%. The magnetic powder preferably has an activation volume Vact of from 1,400 to 1,800 nm3. The magnetic powder particularly preferably has a coercive force Hc of from 159 to 279 kA/m (which is approximately from 2,000 to 3,500 Oe) and a coercivity distribution SFD of from 0.3 to 1.0. The magnetic powder may contain, as an element that substitutes an Fe site of the hexagonal ferrite, at least one kind selected from divalent transition metals M1 and tetravalent transition metals M2.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 7, 2015
    Inventors: Kenji MASADA, Hirohisa OMOTO, Futoshi NAGASHIMA, Daisuke ABE, Toshio TADA, Norihito KASADA
  • Patent number: 8932668
    Abstract: A metallic magnetic powder where a primary particle of each metallic magnetic particle is a powder without forming an aggregate, and a method of making the same that includes manufacturing a metallic magnetic powder constituted of metallic magnetic particles, containing a metallic magnetic phase, with Fe, or Fe and Co as main components, rare earth elements, or yttrium and one or more non-magnetic components removing the non-magnetic component from the metallic magnetic with a reducing agent, while making a complexing agent exist for forming a complex with the non-magnetic component in water; oxidizing the metallic magnetic particle with the non-magnetic component removed; substituting water adhered to the oxidized metallic magnetic particle with an organic solvent; and coating the surface of the metallic magnetic particle with an organic matter different from the organic solvent, while maintaining a wet condition of the metallic magnetic particle with the organic solvent adhered thereto.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: January 13, 2015
    Assignees: The Arizona Board of Regents on Behalf of The University of Arizona, Materials Co., Ltd.
    Inventors: Dong Chul Pyun, Heemin Yoo, Hirohisa Omoto, Takayuki Yoshida
  • Publication number: 20140356642
    Abstract: A metallic magnetic powder where a primary particle of each metallic magnetic particle is a powder without forming an aggregate, and a method of making the same that includes manufacturing a metallic magnetic powder constituted of metallic magnetic particles, containing a metallic magnetic phase, with Fe, or Fe and Co as main components, rare earth elements or yttrium and one or more non-magnetic components removing the non-magnetic component from the metallic magnetic with a reducing agent, while making a complexing agent exist for forming a complex with the non-magnetic component in water; oxidizing the metallic magnetic particle with the non-magnetic component removed; substituting water adhered to the oxidized metallic magnetic particle with an organic solvent; and coating the surface of the metallic magnetic particle with an organic matter different from the organic solvent, while maintaining a wet condition of the metallic magnetic particle with the organic solvent adhered thereto.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 4, 2014
    Applicants: THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA, DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Dong Chul PYUN, Heemin YOO, Hirohisa OMOTO, Takayuki YOSHIDA
  • Publication number: 20130048902
    Abstract: A metal magnetic powder having a metal magnetic phase mainly composed of ferromagnetic elements, and composed of particles containing one or more kinds of elements selected from rare earth elements including Y, and Al, Si. And the method for producing the metal magnetic powder, including the steps of: eluting the non-magnetic components in the particles under an action of a reducing agent acting on the metal magnetic powder, in a solution containing a complexing agent capable of forming the complex with the non-magnetic components; and forming an oxide layer on the particles in the solution after eluting the non-magnetic components into the solution, without drying the particles.
    Type: Application
    Filed: March 31, 2011
    Publication date: February 28, 2013
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Hirohisa Omoto, Takayuki Kikuchi, Toshihiko Ueyama
  • Publication number: 20110305924
    Abstract: A metallic magnetic powder where a primary particle of each metallic magnetic particle is a powder without forming an aggregate, and a method of making the same that includes manufacturing a metallic magnetic powder constituted of metallic magnetic particles, containing a metallic magnetic phase, with Fe, or Fe and Co as main components, rare earth elements , or yttrium and one or more non-magnetic components removing the non-magnetic component from the metallic magnetic with a reducing agent, while making a complexing agent exist for forming a complex with the non-magnetic component in water; oxidizing the metallic magnetic particle with the non-magnetic component removed; substituting water adhered to the oxidized metallic magnetic particle with an organic solvent; and coating the surface of the metallic magnetic particle with an organic matter different from the organic solvent, while maintaining a wet condition of the metallic magnetic particle with the organic solvent adhered thereto.
    Type: Application
    Filed: May 9, 2011
    Publication date: December 15, 2011
    Applicants: DOWA ELECTRONICS MATERIALS CO., LTD., THE ARIZONA BOARD OF REGENTS
    Inventors: Dong Chul PYUN, Heemin YOO, Hirohisa OMOTO, Takayuki YOSHIDA