Patents by Inventor Hirohito Miyashita

Hirohito Miyashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10665462
    Abstract: A first copper alloy sputtering target comprising 0.5 to 4.0 wt % of Al and 0.5 wtppm or less of Si and a second copper alloy sputtering target comprising 0.5 to 4.0 wt % of Sn and 0.5 wtppm or less of Mn are disclosed. The first and/or the second alloy sputtering target can further comprise one or more elements selected from among Sb, Zr, Ti, Cr, Ag, Au, Cd, In and As in a total amount of 1.0 wtppm or less. A semiconductor element wiring formed by the use of the above targets is also disclosed. The above copper alloy sputtering target allows the formation of a wiring material for a semiconductor element, in particular, a seed layer being stable, uniform and free from the occurrence of coagulation during electrolytic copper plating and exhibits excellent sputtering film formation characteristics.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: May 26, 2020
    Assignee: JX NIPPON MINING & METALS CORPORATION
    Inventors: Takeo Okabe, Hirohito Miyashita
  • Publication number: 20180211841
    Abstract: A first copper alloy sputtering target comprising 0.5 to 4.0 wt % of Al and 0.5 wtppm or less of Si and a second copper alloy sputtering target comprising 0.5 to 4.0 wt % of Sn and 0.5 wtppm or less of Mn are disclosed. The first and/or the second alloy sputtering target can further comprise one or more elements selected from among Sb, Zr, Ti, Cr, Ag, Au, Cd, In and As in a total amount of 1.0 wtppm or less. A semiconductor element wiring formed by the use of the above targets is also disclosed. The above copper alloy sputtering target allows the formation of a wiring material for a semiconductor element, in particular, a seed layer being stable, uniform and free from the occurrence of coagulation during electrolytic copper plating and exhibits excellent sputtering film formation characteristics.
    Type: Application
    Filed: March 20, 2018
    Publication date: July 26, 2018
    Inventors: Takeo Okabe, Hirohito Miyashita
  • Patent number: 9896745
    Abstract: A copper alloy sputtering target most suitable for formation of an interconnection material of a semiconductor device, particularly for formation of a seed layer, characterized in that the target contains 0.4 to 5 wt % of Sn, and the structure of the target does not substantially contain any precipitates, and the resistivity of the target material is 2.2 ??cm or more. This target enables formation of an interconnection material of a semiconductor device, particularly a uniform seed layer stable during copper electroplating and is excellent in sputtering deposition characteristics. A method for manufacturing such a target is also disclosed.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: February 20, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Takeo Okabe, Hirohito Miyashita
  • Patent number: 9685307
    Abstract: Provided is a tabular sputtering target on which an erosion portion and a non-erosion portion are formed, and the surface area thereof exceeds 100% but is less than 125% of the surface area when the target is assumed to be planar. Also provided is a tabular sputtering target on which an erosion portion and a non-erosion portion are formed comprising one or more concave portions on the target surface region, and the surface area thereof exceeds 100% but is less than 125% of the surface area when the target is assumed to be planar. An inexpensive, small-capacity power supply unit can be used by minimizing the electrical variations in the sputtering circuit as much as possible throughout the lifespan of the target through self sputtering or high power sputtering.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: June 20, 2017
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Hirohito Miyashita
  • Patent number: 9472383
    Abstract: Provided is a copper or copper alloy target/copper alloy backing plate assembly in which the anti-eddy current characteristics and other characteristics required in a magnetron sputtering target are simultaneously pursued in a well balanced manner. This copper or copper alloy target/copper alloy backing plate assembly is used for magnetron sputtering, and the copper alloy backing plate is formed from low beryllium copper alloy or Cu—Ni—Si-based alloy. Further, with this copper or copper alloy target/copper alloy backing plate assembly, the copper alloy backing plate has electrical conductivity of 35 to 60% (IACS), and 0.2% proof stress of 400 to 850 MPa.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: October 18, 2016
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Takeo Okabe, Hirohito Miyashita
  • Patent number: 8262816
    Abstract: A hafnium alloy target containing either or both of Zr and Ti in a gross amount of 100 wtppm-10 wt % in Hf, wherein the average crystal grain size is 1-100 ?m, the impurities of Fe, Cr and Ni are respectively 1 wtppm or less, and the habit plane ratio of the plane {002} and three planes {103}, {014} and {015} lying within 35° from {002} is 55% or greater, and the variation in the total sum of the intensity ratios of these four planes depending on locations is 20% or less. As a result, obtained is a hafnium alloy target having favorable deposition property and deposition speed, which generates few particles, and which is suitable for forming a high dielectric gate insulation film such as HfO or HfON film, and the manufacturing method thereof.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: September 11, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Takeo Okabe, Shuichi Irumata, Yasuhiro Yamakoshi, Hirohito Miyashita, Ryo Suzuki
  • Patent number: 8246764
    Abstract: A first copper alloy sputtering target comprising 0.5 to 4.0 wt % of Al and 0.5 wtppm or less of Si and a second copper alloy sputtering target comprising 0.5 to 4.0 wt % of Sn and 0.5 wtppm or less of Mn are disclosed. The first and/or the second alloy sputtering target can further comprise one or more elements selected from among Sb, Zr, Ti, Cr, Ag, Au, Cd, In and As in a total amount of 1.0 wtppm or less. A semiconductor element wiring formed by the use of the above targets is also disclosed. The above copper alloy sputtering target allows the formation of a wiring material for a semiconductor element, in particular, a seed layer being stable, uniform and free from the occurrence of coagulation during electrolytic copper plating and exhibits excellent sputtering film formation characteristics.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: August 21, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Takeo Okabe, Hirohito Miyashita
  • Patent number: 8241438
    Abstract: A hafnium alloy target containing either or both of Zr and Ti in a gross amount of 100 wtppm-10 wt % in Hf, wherein the average crystal grain size is 1-100 ?m, the impurities of Fe, Cr and Ni are respectively 1 wtppm or less, and the habit plane ratio of the plane {002} and three planes {103}, {014} and {015} lying within 35° from {002} is 55% or greater, and the variation in the total sum of the intensity ratios of these four planes depending on locations is 20% or less. As a result, obtained is a hafnium alloy target having favorable deposition property and deposition speed, which generates few particles, and which is suitable for forming a high dielectric gate insulation film such as HfO or HfON film, and the manufacturing method thereof.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: August 14, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Takeo Okabe, Shuichi Irumata, Yasuhiro Yamakoshi, Hirohito Miyashita, Ryo Suzuki
  • Patent number: 8177947
    Abstract: Provided is a sputtering target in which the ratio of X-ray intensity of (110) measured with X-ray diffraction is 0.4 or less, and even 0.2 or less in a Ta or Ta alloy target. Further provided is a sputtering target in which the ratio of X-ray intensity of (110) on a Ta or Ta alloy target surface measured with X-ray diffraction is 0.8 or less, and the ratio of the foregoing X-ray intensity at a depth of 100 ?m or deeper is 0.4 or less. This Ta or Ta alloy target is capable of minimizing the fluctuation of the deposition speed for each target throughout the target life of a sputtering target, and thereby improving and stabilizing the production efficiency of semiconductors during the sputtering process, and contributing to the reduction of production costs.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: May 15, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Hirohito Miyashita
  • Patent number: 8062440
    Abstract: A hafnium alloy target containing either or both of Zr and Ti in a gross amount of 100 wtppm-10 wt % in Hf, wherein the average crystal grain size is 1-100 ?m, the impurities of Fe, Cr and Ni are respectively 1 wtppm or less, and the habit plane ratio of the plane {002} and three planes {103}, {014} and {015} lying within 35° from {002} is 55% or greater, and the variation in the total sum of the intensity ratios of these four planes depending on locations is 20% or less. As a result, obtained is a hafnium alloy target having favorable deposition property and deposition speed, which generates few particles, and which is suitable for forming a high dielectric gate insulation film such as HfO or HfON film, and the manufacturing method thereof.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: November 22, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Takeo Okabe, Shuichi Irumata, Yasuhiro Yamakoshi, Hirohito Miyashita, Ryo Suzuki
  • Patent number: 7740718
    Abstract: Provided is high purity nickel or nickel alloy target for magnetron sputtering having superior sputtering film uniformity and in which the magnetic permeability of the target is 100 or more, and this high purity nickel or a nickel alloy target for magnetron sputtering capable of achieving a favorable film uniformity (evenness of film thickness) and superior in plasma ignition (firing) even during the manufacturing process employing a 300 mm wafer. The present invention also provides the manufacturing method of such high purity nickel or nickel alloy target.
    Type: Grant
    Filed: November 28, 2002
    Date of Patent: June 22, 2010
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Yasuhiro Yamakoshi, Hirohito Miyashita
  • Patent number: 7618505
    Abstract: Provided is high purity nickel or nickel alloy target for Magnetron sputtering having superior sputtering film uniformity and in which the magnetic permeability of the target is 100 or more, and this high purity nickel or a nickel alloy target for magnetron sputtering capable of achieving a favorable film uniformity (evenness of film thickness) and superior plasma ignition (firing) even during the manufacturing process employing a 300 mm wafer. The present invention also provides the manufacturing method of such high purity nickel or nickel alloy target.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: November 17, 2009
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Yasuhiro Yamakoshi, Hirohito Miyashita
  • Publication number: 20090140430
    Abstract: A first copper alloy sputtering target comprising 0.5 to 4.0 wt % of Al and 0.5 wtppm or less of Si and a second copper alloy sputtering target comprising 0.5 to 4.0 wt % of Sn and 0.5 wtppm or less of Mn are disclosed. The first and/or the second alloy sputtering target can further comprise one or more elements selected from among Sb, Zr, Ti, Cr, Ag, Au, Cd, In and As in a total amount of 1.0 wtppm or less. A semiconductor element wiring formed by the use of the above targets is also disclosed. The above copper alloy sputtering target allows the formation of a wiring material for a semiconductor element, in particular, a seed layer being stable, uniform and free from the occurrence of coagulation during electrolytic copper plating and exhibits excellent sputtering film formation characteristics.
    Type: Application
    Filed: February 9, 2009
    Publication date: June 4, 2009
    Applicant: Nippon Mining & Metals Co., Ltd.
    Inventors: Takeo Okabe, Hirohito Miyashita
  • Publication number: 20090139863
    Abstract: A first copper alloy sputtering target comprising 0.5 to 4.0 wt % of Al and 0.5 wtppm or less of Si and a second copper alloy sputtering target comprising 0.5 to 4.0 wt % of Sn and 0.5 wtppm or less of Mn are disclosed. The first and/or the second alloy sputtering target can further comprise one or more elements selected from among Sb, Zr, Ti, Cr, Ag, Au, Cd, In and As in a total amount of 1.0 wtppm or less. A semiconductor element wiring formed by the use of the above targets is also disclosed. The above copper alloy sputtering target allows the formation of a wiring material for a semiconductor element, in particular, a seed layer being stable, uniform and free from the occurrence of coagulation during electrolytic copper plating and exhibits excellent sputtering film formation characteristics.
    Type: Application
    Filed: February 9, 2009
    Publication date: June 4, 2009
    Applicant: Nippon Mining & Metals Co., Ltd.
    Inventors: Takeo Okabe, Hirohito Miyashita
  • Patent number: 7507304
    Abstract: Provided is a first copper alloy sputtering target comprising 0.5 to 4.0 wt % of Al and 0.5 wtppm or less of Si; a second copper alloy sputtering target comprising 0.5 to 4.0 wt % of Sn and 0.5 wtppm or less of Mn; the first or the second alloy sputtering target further comprising one or more selected from among Sb, Zr, Ti, Cr, Ag, Au, Cd, In and As in a total amount of 1.0 wtppm or less; and a semiconductor element wiring formed by the use of the above target. The above copper alloy sputtering target allows the formation of a wiring material for a semiconductor element, in particular, a seed layer being stable, uniform and free from the occurrence of coagulation during electrolytic copper plating and exhibits excellent sputtering film formation characteristics.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: March 24, 2009
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Takeo Okabe, Hirohito Miyashita
  • Publication number: 20090057142
    Abstract: A hafnium alloy target containing either or both of Zr and Ti in a gross amount of 100 wtppm-10 wt % in Hf; wherein the average crystal grain size is 1-100 ?m, the impurities of Fe, Cr and Ni are respectively 1 wtppm or less, and the habit plane ratio of the plane {002} and three planes {103}, {014} and {015} lying within 35° from {002} is 55% or greater, and the variation in the total sum of the intensity ratios of these four planes depending on locations is 20% or less. As a result, obtained is a hafnium alloy target having favorable deposition property and deposition speed, which generates few particles, and which is suitable for forming a high dielectric gate insulation film such as HfO or HfON film, and the manufacturing method thereof.
    Type: Application
    Filed: October 28, 2008
    Publication date: March 5, 2009
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Takeo Okabe, Shuichi Irumata, Yasuhiro Yamakoshi, Hirohito Miyashita, Ryo Suzuki
  • Publication number: 20090050475
    Abstract: A hafnium alloy target containing either or both of Zr and Ti in a gross amount of 100 wtppm?10 wt % in Hf, wherein the average crystal grain size is 1-100 ?m, the impurities of Fe, Cr and Ni are respectively 1 wtppm or less, and the habit plane ratio of the plane {002} and three planes {103}, {014} and {015} lying within 35° from {002} is 55% or greater, and the variation in the total sum of the intensity ratios of these four planes depending on locations is 20% or less. As a result, obtained is a hafnium alloy target having favorable deposition property and deposition speed, which generates few particles, and which is suitable for forming a high dielectric gate insulation film such as HfO or HfON film, and the manufacturing method thereof.
    Type: Application
    Filed: October 28, 2008
    Publication date: February 26, 2009
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Takeo Okabe, Shuichi Irumata, Yasuhiro Yamakoshi, Hirohito Miyashita, Ryo Suzuki
  • Publication number: 20090032392
    Abstract: Provided is a sputtering target in which the ratio of X-ray intensity of (110) measured with X-ray diffraction is 0.4 or less, and even 0.2 or less in a Ta or Ta alloy target. Further provided is a sputtering target in which the ratio of X-ray intensity of (110) on a Ta or Ta alloy target surface measured with X-ray diffraction is 0.8 or less, and the ratio of the foregoing X-ray intensity at a depth of 100 ?m or deeper is 0.4 or less. This Ta or Ta alloy target is capable of minimizing the fluctuation of the deposition speed for each target throughout the target life of a sputtering target, and thereby improving and stabilizing the production efficiency of semiconductors during the sputtering process, and contributing to the reduction of production costs.
    Type: Application
    Filed: March 28, 2006
    Publication date: February 5, 2009
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventor: Hirohito Miyashita
  • Publication number: 20090000704
    Abstract: A hafnium alloy target containing either or both of Zr and Ti in a gross amount of 100 wtppm-10 wt % in Hf, wherein the average crystal grain size is 1-100 ?m, the impurities of Fe, Cr and Ni are respectively 1 wtppm or less, and the habit plane ratio of the plane {002} and three planes {103}, {014} and {015} lying within 35° from {002} is 55% or greater, and the variation in the total sum of the intensity ratios of these four planes depending on locations is 20% or less. As a result, obtained is a hafnium alloy target having favorable deposition property and deposition speed, which generates few particles, and which is suitable for forming a high dielectric gate insulation film such as HfO or HfON film, and the manufacturing method thereof.
    Type: Application
    Filed: September 4, 2008
    Publication date: January 1, 2009
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Takeo Okabe, Shuichi Irumata, Yasuhiro Yamakoshi, Hirohito Miyashita, Ryo Suzuki
  • Patent number: 7459036
    Abstract: Provided is a hafnium alloy target containing either or both of Zr and Ti in a gross amount of 100 wtppm-10 wt % in Hf, wherein the average crystal grain size is 1-100 ?m, the impurities of Fe, Cr and Ni are respectively 1 wtppm or less, and the habit plane ratio of the plane {002} and three planes {103}, {014} and {015} lying within 35° from {002} is 55% or greater, and the variation in the total sum of the intensity ratios of these four planes depending on locations is 20% or less. As a result, obtained is a hafnium alloy target having favorable deposition property and deposition speed, which generates few particles, and which is suitable for forming a high dielectric gate insulation film such as HfO or HfON film, and the manufacturing method thereof.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: December 2, 2008
    Assignee: Nippon Mining & Metals Co., Ltd
    Inventors: Takeo Okabe, Shuichi Irumata, Yasuhiro Yamakoshi, Hirohito Miyashita, Ryo Suzuki