Patents by Inventor Hirokazu Chiyonobu

Hirokazu Chiyonobu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200298840
    Abstract: It is an object to provide a technique capable of optimizing a caution degree which is a degree of caution to be exerted in a vehicle. A controller determines whether a mutual dangerous driving has been performed based on travel information of a plurality of vehicles acquired in an acquisition part, and obtaining a caution degree which is a degree of caution to be exerted in each of the plurality of vehicles based on a determination result. The controller performs control of correcting a caution degree of a first vehicle in the plurality of vehicles based on a caution degree of a second vehicle in the plurality of vehicles which has performed the mutual dangerous driving with the first vehicle.
    Type: Application
    Filed: January 26, 2018
    Publication date: September 24, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Mitsuo SHIMOTANI, Naoki ISOZAKI, Hirokazu CHIYONOBU, Yuji IGARASHI
  • Patent number: 10267920
    Abstract: An object is to provide in a positioning device of a moving body such as a vehicle, a technique which can modify a built-in clock error of a moving body to increase accuracy of a velocity. The positioning device includes a built-in clock error estimating unit which estimates a built-in clock error of the vehicle as a built-in clock error based on a difference between a delta range and a calculated range rate, and a range rate estimating unit which estimates a vehicle stop range rate based on position and velocity of GPS satellite based on transmission signal and a vehicle position, and modifies a calculated range rate, based on the built-in clock error. Further, the positioning device includes an own vehicle velocity calculating unit which calculates own vehicle velocities in three axial directions which form an orthogonal coordinate system, based on a navigation matrix, the vehicle stop range rate and the modified calculated range rate.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: April 23, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Tadatomi Ishigami, Atsushi Maeda, Masatoshi Fujii, Hirokazu Chiyonobu, Kohei Fujimoto
  • Patent number: 9864064
    Abstract: An object of the present invention is to provide a positioning device which can more reliably and frequently correct a own vehicle position earlier, reliably detect an error matching state or a straying state earlier and correct the position to a correct position. The positioning device according to the present invention includes a GPS receiver, a GPS position calculating unit which calculates pseudo distances to the GPS satellites based on the transmission signals, and calculates a re-calculated GPS position which is the own vehicle position based on the pseudo distances, and a multipath influence evaluating unit which evaluates a multipath influence on the GPS position based on a difference between the GPS position calculated by the GPS receiver and the re-calculated GPS position calculated by the GPS position calculating unit.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: January 9, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tadatomi Ishigami, Atsushi Maeda, Masatoshi Fujii, Hirokazu Chiyonobu, Kohei Fujimoto
  • Patent number: 9587957
    Abstract: A vehicle position display controller performs a branch determination processing of determining whether a vehicle has entered a branch road. In addition, in a case where a connecting road through which a currently traveled road is connected to a road extending in parallel with the currently traveled road lies ahead of a position of the vehicle, the vehicle position display controller performs a road shape conversion processing of subjecting the road extending in parallel to the branch determination processing on the assumption that the road extending in parallel is the branch road by making a correction of an angle between the currently traveled road and the connecting road. However, in a case where the vehicle travels at a speed equal to or greater than a predetermined speed, the vehicle position display controller does not perform the road shape conversion processing.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: March 7, 2017
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kohei Fujimoto, Masatoshi Fujii, Tadatomi Ishigami, Hirokazu Chiyonobu, Atsushi Maeda
  • Publication number: 20150362326
    Abstract: A vehicle position display controller performs a branch determination processing of determining whether a vehicle has entered a branch road. In addition, in a case where a connecting road through which a currently traveled road is connected to a road extending in parallel with the currently traveled road lies ahead of a position of the vehicle, the vehicle position display controller performs a road shape conversion processing of subjecting the road extending in parallel to the branch determination processing on the assumption that the road extending in parallel is the branch road by making a correction of an angle between the currently traveled road and the connecting road. However, in a case where the vehicle travels at a speed equal to or greater than a predetermined speed, the vehicle position display controller does not perform the road shape conversion processing.
    Type: Application
    Filed: March 1, 2013
    Publication date: December 17, 2015
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kohei FUJIMOTO, Masatoshi FUJII, Tadatomi ISHIGAMI, Hirokazu CHIYONOBU, Atsushi MAEDA
  • Publication number: 20150149073
    Abstract: An object of the present invention is to provide a positioning device which can more reliably and frequently correct a own vehicle position earlier, reliably detect an error matching state or a straying state earlier and correct the position to a correct position. The positioning device according to the present invention includes a GPS receiver, a GPS position calculating unit which calculates pseudo distances to the GPS satellites based on the transmission signals, and calculates a re-calculated GPS position which is the own vehicle position based on the pseudo distances, and a multipath influence evaluating unit which evaluates a multipath influence on the GPS position based on a difference between the GPS position calculated by the GPS receiver and the re-calculated GPS position calculated by the GPS position calculating unit.
    Type: Application
    Filed: June 27, 2012
    Publication date: May 28, 2015
    Applicant: Mitsubishi Electric Corporation
    Inventors: Tadatomi Ishigami, Atsushi Maeda, Masatoshi Fujii, Hirokazu Chiyonobu, Kohei Fujimoto
  • Publication number: 20150138015
    Abstract: An object is to provide in a positioning device of a moving body such as a vehicle, a technique which can modify a built-in clock error of a moving body to increase accuracy of a velocity. The positioning device includes a built-in clock error estimating unit which estimates a built-in clock error of the vehicle as a built-in clock error based on a difference between a delta range and a calculated range rate, and a range rate estimating unit which estimates a vehicle stop range rate based on position and velocity of GPS satellite based on transmission signal and a vehicle position, and modifies a calculated range rate, based on the built-in clock error. Further, the positioning device includes an own vehicle velocity calculating unit which calculates own vehicle velocities in three axial directions which form an orthogonal coordinate system, based on a navigation matrix, the vehicle stop range rate and the modified calculated range rate.
    Type: Application
    Filed: June 27, 2012
    Publication date: May 21, 2015
    Applicant: Mitsubishi Electric Corporation
    Inventors: Tadatomi Ishigami, Atsushi Maeda, Masatoshi Fujii, Hirokazu Chiyonobu, Kohei Fujimoto