Patents by Inventor Hiroki Okabe

Hiroki Okabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10608223
    Abstract: A method for manufacturing a separator for fuel cell including a seal part of thermosetting resin can have improved productivity. The method includes a placing step to place uncured thermosetting resin on a substrate, a pre-curing step to pre-cure the uncured thermosetting resin on the substrate, and a curing step to cure the pre-cured thermosetting resin on the collected plurality of substrates to collectively form the seal parts on the plurality of substrates.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: March 31, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideo Nakamura, Kazuomi Yamanishi, Hiroki Okabe
  • Patent number: 10511036
    Abstract: A channel forming body used in a fuel cell module has a gas channel, a water conduit, and a communication path that provides communication between the gas channel and the water conduit. When a ridge is seen in a cross-section perpendicular to a channel extension direction, one of both ends of an external shape of the ridge is shaped so as to be located closer to a center of the ridge than an imaginary surface of the channel assumed to extend in a straight line along the channel extension direction. Portions of the ridge located closer to the center of the ridge are formed opposite from each other at left and right ends of the external shape of the ridge with the communication path interposed therebetween.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: December 17, 2019
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Hiroya Nakaji, Kazunori Shibata, Hiroki Okabe, Kousuke Kawajiri, Satoshi Futami, Keiji Hashimoto, Takamasa Kanie
  • Publication number: 20190305327
    Abstract: A fuel cell includes: a membrane electrode assembly; and a separator disposed on one side of the membrane electrode assembly, wherein the separator includes flow path grooves through which reactant gas flows between the separator and the membrane electrode assembly, the flow path grooves include: wavy grooves wavily extending in a first direction and arranged in a second direction orthogonal to the first direction; and a linear groove linearly extending in the first direction, the wavy grooves include: a first wavy groove located closest to the linear groove among the wavy grooves; and a second wavy groove located opposite to the linear groove with respect to the first wavy groove, and amplitude of the first wavy groove is smaller than that of the second wavy groove.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 3, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroki OKABE, Manabu KATO
  • Publication number: 20190229353
    Abstract: A fuel cell stack 11 includes a cell laminate 21 composed of a plurality of stacked cells 20, and air is introduced from an anode end part 21a of the cell laminate 21. The cell laminate 21 has two end cells 24 installed adjacently to a cathode end part 21b side, thereby providing the cathode end part 21b with high thermal insulation properties.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norishige KONNO, Hiroki OKABE
  • Patent number: 10340532
    Abstract: A separator for fuel cell includes a corrugated portion formed to have a corrugated cross section where a first groove that is concave to a first surface to form a flow path for a first fluid on the first surface and a second groove that is concave to a second surface opposite to the first surface to form a flow path for a second fluid on the second surface are arranged alternately and repeatedly. Each of the second grooves has at least one shallower groove section formed to have a less depth from the second surface than depth of a remaining groove section and provided to form a communication flow channel on the first surface side, which is arranged to communicate between two flow path spaces for the first fluid that are adjacent to each other across the shallower groove section.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: July 2, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroki Okabe, Hiroya Nakaji, Makoto Yoshida, Shigetaka Hamada, Takuya Kurihara, Kenji Sato, Hideaki Tanaka, Nobuhiko Nakagaki, Junji Ueda, Katsuhiko Kinoshita
  • Publication number: 20190148693
    Abstract: A method for manufacturing a separator for fuel cell including a seal part of thermosetting resin can have improved productivity. The method includes a placing step to place uncured thermosetting resin on a substrate, a pre-curing step to pre-cure the uncured thermosetting resin on the substrate, and a curing step to cure the pre-cured thermosetting resin on the collected plurality of substrates to collectively form the seal parts on the plurality of substrates.
    Type: Application
    Filed: October 3, 2018
    Publication date: May 16, 2019
    Inventors: Hideo NAKAMURA, Kazuomi YAMANISHI, Hiroki OKABE
  • Patent number: 10181607
    Abstract: A gas flow passage-forming member is disposed between a membrane electrode and gas diffusion layer assembly and a separator of a fuel cell, and the gas flow passage-forming member is configured to form a gas flow passage. The gas flow passage-forming member has a corrugated shape such that groove portions and ridge portions are provided on each of a front side and a back side of the gas flow passage-forming member. The groove portions each serve as the gas flow passage. The gas flow passage-forming member has communication holes providing communication between the front side and the back side, and the communication holes are provided in a region downstream of an upstream region in a gas flow direction. The upstream region is a non-communication region with no communication hole.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: January 15, 2019
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyota Shatai Kabushiki Kaisha
    Inventors: Kazunori Shibata, Hiroya Nakaji, Hiroki Okabe, Yoshinori Shinozaki, Kousuke Kawajiri, Satoshi Futami, Takamasa Kanie
  • Patent number: 10164268
    Abstract: A fuel cell includes a power generating body that includes an electrolyte membrane; a separator provided along the power generating body; a flow path through which a fluid to be supplied to the fuel cell flows; a first seal portion that surrounds the flow path in a surface of the separator, and inhibits the fluid from flowing out of the fuel cell; and an electrolytic corrosion inhibiting portion provided between the flow path and the first seal portion.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: December 25, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroki Okabe, Kenji Sato, Takuya Kurihara
  • Patent number: 10109868
    Abstract: A gas channel forming plate includes protrusions, which extend parallel with each other, gas channels that are respectively located between each adjacent pair of the protrusions, and water channels, which are respectively formed on the back surface of each protrusion. Each protrusion includes first communication portions and second communication portions. Each first communication portion includes a first opening. Each second communication portion includes a second opening. The second communication portions of each protrusion constitute an expanding region, in which the opening area of the second opening in each second communication portion is greater than the opening area of the first opening of each first communication portion, to limit introduction of water to the water channel on the back side of the protrusion using capillary action by the second communication portions.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: October 23, 2018
    Assignees: Toyota Shatai Kabushiki Kaisha, Toyota Jidosha Kabushiki Kaisha
    Inventors: Kousuke Kawajiri, Satoshi Futami, Yuki Sugino, Takamasa Kanie, Hiroki Okabe, Kazunori Shibata
  • Patent number: 10079394
    Abstract: A method of welding comprising contacting a first electrode to a porous body flow path, contacting a second electrode to a plate material, pressing the porous body flow path and the plate material by the first and second electrodes in a thickness direction of the plate material, and spot welding the porous body flow path and the plate material, wherein: a deformation of the plate material in a direction of the second electrode pressing the plate material is smaller than a deformation of the porous body flow path in a direction of the first electrode pressing the porous body flow path.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: September 18, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroki Okabe, Makoto Aoyama, Hiroshi Adachi, Takashi Kondo
  • Publication number: 20180233754
    Abstract: A fuel cell stack 11 includes a cell laminate 21 composed of a plurality of stacked cells 20, and air is introduced from an anode end part 21a of the cell laminate 21. The cell laminate 21 has two end cells 24 installed adjacently to a cathode end part 21b side, thereby providing the cathode end part 21b with high thermal insulation properties.
    Type: Application
    Filed: April 11, 2018
    Publication date: August 16, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norishige KONNO, Hiroki OKABE
  • Patent number: 10038202
    Abstract: A fuel cell separator 10 includes a power generation section 10B provided in a central region on a surface of the separator formed into a plate, a plurality of manifolds 11A, 11B, 12A, and 12B provided in a region closer to the outer periphery than the power generation section 10B, and a reinforcing portion 14A provided so as to extend from a manifold beam portion 15 formed between the plurality of manifolds 11A, 11B, 12A, and 12B to a gap region 13 formed between the power generation section 10B and the manifolds 11A, 11B, 12A, and 12B.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: July 31, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroki Okabe, Norishige Konno
  • Publication number: 20180166706
    Abstract: A fuel cell stack includes a plurality of cells laminated. Each of the cells includes: a membrane electrode gas diffusion layer assembly; an insulating member; a first separator including a first gas passage and a first refrigerant passage; first, second, and third manifolds penetrating through the insulating member and the first separator such that a first gas, a second gas, and a refrigerant circulate through the first, second, and third manifolds, respectively; and a second separator including a second gas passage and a second refrigerant passage and configured to sandwich the membrane electrode gas diffusion layer assembly and the insulating member together with the first separator. In the each of the cells, the insulating member includes a first communication portion, a second communication portion, and a third communication portion, and the first separator has a communication opening via which the third communication portion communicates with the first refrigerant passage.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 14, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroki OKABE
  • Publication number: 20180159160
    Abstract: A manufacturing method for a fuel cell includes: preparing a membrane electrode gas diffusion layer assembly; preparing a support frame having an electrical insulating property and an ultraviolet permeability; preparing a separator; bonding the membrane electrode gas diffusion layer assembly and the support frame to each other via a first ultraviolet curable adhesive; and, after the membrane electrode gas diffusion layer assembly and the support frame are bonded to each other, bonding the support frame and the separator to each other via a second ultraviolet curable adhesive.
    Type: Application
    Filed: October 30, 2017
    Publication date: June 7, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroki OKABE
  • Patent number: 9923228
    Abstract: A fuel cell is formed by laminating a plurality of power generating units. The power generating unit includes: a membrane electrode gas diffusion layer assembly; a sealing portion disposed along its outer circumference; a porous body flow path in which oxidant gas supplied to a cathode-side catalytic layer flows; a shielding plate provided between the sealing portion and the porous body flow path; and first, second separator plates configured to sandwich the membrane electrode gas diffusion layer assembly and the porous body flow path therebetween. The shielding plate, the porous body flow path, and the first separator plate making contact with the porous body flow path project into the oxidant exhaust gas discharge manifold determined by the sealing portion.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: March 20, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideki Kubo, Hiroki Okabe, Takashi Kondo, Atsushi Ida
  • Publication number: 20180034079
    Abstract: A gas flow passage-forming member is disposed between a membrane electrode and gas diffusion layer assembly and a separator of a fuel cell, and the gas flow passage-forming member is configured to form a gas flow passage. The gas flow passage-forming member has a corrugated shape such that groove portions and ridge portions are provided on each of a front side and a back side of the gas flow passage-forming member. The groove portions each serve as the gas flow passage. The gas flow passage-forming member has communication holes providing communication between the front side and the back side, and the communication holes are provided in a region downstream of an upstream region in a gas flow direction. The upstream region is a non-communication region with no communication hole.
    Type: Application
    Filed: July 26, 2017
    Publication date: February 1, 2018
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Kazunori SHIBATA, Hiroya NAKAJI, Hiroki OKABE, Yoshinori SHINOZAKI, Kousuke KAWAJIRI, Satoshi FUTAMI, Takamasa KANIE
  • Publication number: 20170331123
    Abstract: A channel forming body used in a fuel cell module has a gas channel, a water conduit, and a communication path that provides communication between the gas channel and the water conduit. When a ridge is seen in a cross-section perpendicular to a channel extension direction, one of both ends of an external shape of the ridge is shaped so as to be located closer to a center of the ridge than an imaginary surface of the channel assumed to extend in a straight line along the channel extension direction. Portions of the ridge located closer to the center of the ridge are formed opposite from each other at left and right ends of the external shape of the ridge with the communication path interposed therebetween.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 16, 2017
    Inventors: Hiroya Nakaji, Kazunori Shibata, Hiroki Okabe, Kousuke Kawajiri, Satoshi Futami, Keiji Hashimoto, Takamasa Kanie
  • Patent number: 9590255
    Abstract: A fuel cell includes a separator having an uneven shape integrally formed on the front and the back surfaces thereof, so that gas can flow in a recessed portion of one surface and cooling water can flow in a recessed portion of the other surface. The separator has a gas passage portion connected to a manifold via a gas outlet/inlet portion. A first continuous portion that connects the gas outlet/inlet portion to the manifold is different from a second continuous portion that connects the gas outlet/inlet portion to the gas passage in communicating width. The gas outlet/inlet portion has an elliptical embossed portion that protrudes toward the gas passage side. A major axis direction of the embossed portion inclines relative to a straight axis connecting one end of the first continuous portion and one end of the second continuous portion toward a straight axis connecting the other ends of the first and second continuous portions.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: March 7, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroki Okabe
  • Publication number: 20170054156
    Abstract: A gas channel forming plate includes protrusions, which extend parallel with each other, gas channels that are respectively located between each adjacent pair of the protrusions, and water channels, which are respectively formed on the back surface of each protrusion. Each protrusion includes first communication portions and second communication portions. Each first communication portion includes a first opening. Each second communication portion includes a second opening. The second communication portions of each protrusion constitute an expanding region, in which the opening area of the second opening in each second communication portion is greater than the opening area of the first opening of each first communication portion, to limit introduction of water to the water channel on the back side of the protrusion using capillary action by the second communication portions.
    Type: Application
    Filed: August 3, 2016
    Publication date: February 23, 2017
    Applicants: TOYOTA SHATAI KABUSHIKI KAISHA, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kousuke Kawajiri, Satoshi Futami, Yuki Sugino, Takamasa Kanie, Hiroki Okabe, Kazunori Shibata
  • Publication number: 20160380277
    Abstract: A separator for fuel cell includes a corrugated portion formed to have a corrugated cross section where a first groove that is concave to a first surface to form a flow path for a first fluid on the first surface and a second groove that is concave to a second surface opposite to the first surface to form a flow path for a second fluid on the second surface are arranged alternately and repeatedly. Each of the second grooves has at least one shallower groove section formed to have a less depth from the second surface than depth of a remaining groove section and provided to form a communication flow channel on the first surface side, which is arranged to communicate between two flow path spaces for the first fluid that are adjacent to each other across the shallower groove section.
    Type: Application
    Filed: September 13, 2016
    Publication date: December 29, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroki OKABE, Hiroya NAKAJI, Makoto YOSHIDA, Shigetaka HAMADA, Takuya KURIHARA, Kenji SATO, Hideaki TANAKA, Nobuhiko NAKAGAKI, Junji UEDA, Katsuhiko KINOSHITA