Patents by Inventor Hiroki Shimoyama
Hiroki Shimoyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12188555Abstract: The present invention provides a shift control method include: setting a basic target synchronization rotation speed that is a basic target value of the input shaft rotation speed during the shift; determining whether or not an accelerating intention is present when the shift is a downshift with a driving force requirement to the vehicle; when the accelerating intention is present, setting a first target input shaft rotation speed as the target input shaft rotation speed, the first target input shaft rotation speed being obtained by increasingly correcting the basic target synchronization rotation speed; and when the accelerating intention is not present, setting a second target input shaft rotation speed as the target input shaft rotation speed, the second target input shaft rotation speed being obtained by maintaining or decreasingly correcting the basic target synchronization rotation speed.Type: GrantFiled: May 20, 2019Date of Patent: January 7, 2025Assignee: NISSAN MOTOR CO., LTD.Inventors: Hiroki Shimoyama, Munetoshi Ueno, Takefumi Suzuki
-
Patent number: 11680638Abstract: The present invention provides a shift control method implemented in a vehicle equipped with an automatic transmission for controlling an input shaft rotation speed to a target input shaft rotation speed during a shift. The method includes setting of a basic target synchronization rotation speed that is a basic target value of the input shaft rotation speed during the shift, and setting of a corrected target input shaft rotation speed as the target input shaft rotation speed when the shift is a downshift without a requirement for a driving force of the vehicle, The corrected target input shaft rotation speed is obtained by decreasingly correcting the basic target synchronization rotation speed. Further, a decreasing correction amount of the basic target synchronization rotation speed is set so as to become larger as a deceleration of the vehicle becomes larger.Type: GrantFiled: May 20, 2019Date of Patent: June 20, 2023Assignee: NISSAN MOTOR CO., LTD.Inventors: Hiroki Shimoyama, Munetoshi Ueno, Takefumi Suzuki
-
Publication number: 20220260154Abstract: The present invention provides a shift control method implemented in a vehicle equipped with an automatic transmission for controlling an input shaft rotation speed to a target input shaft rotation speed during a shift. The method includes setting of a basic target synchronization rotation speed that is a basic target value of the input shaft rotation speed during the shift, and setting of a corrected target input shaft rotation speed as the target input shaft rotation speed when the shift is a downshift without a requirement for a driving force of the vehicle, The corrected target input shaft rotation speed is obtained by decreasingly correcting the basic target synchronization rotation speed. Further, a decreasing correction amount of the basic target synchronization rotation speed is set so as to become larger as a deceleration of the vehicle becomes larger.Type: ApplicationFiled: May 20, 2019Publication date: August 18, 2022Applicant: NISSAN MOTOR CO., LTD.Inventors: Hiroki SHIMOYAMA, Munetoshi UENO, Takefumi SUZUKI
-
Publication number: 20220243805Abstract: The present invention provides a shift control method include: setting a basic target synchronization rotation speed that is a basic target value of the input shaft rotation speed during the shift; determining whether or not an accelerating intention is present when the shift is a downshift with a driving force requirement to the vehicle; when the accelerating intention is present, setting a first target input shaft rotation speed as the target input shaft rotation speed, the first target input shaft rotation speed being obtained by increasingly correcting the basic target synchronization rotation speed; and when the accelerating intention is not present, setting a second target input shaft rotation speed as the target input shaft rotation speed, the second target input shaft rotation speed being obtained by maintaining or decreasingly correcting the basic target synchronization rotation speed.Type: ApplicationFiled: May 20, 2019Publication date: August 4, 2022Applicant: NISSAN MOTOR CO., LTD.Inventors: Hiroki SHIMOYAMA, Munetoshi UENO, Takefumi SUZUKI
-
Patent number: 10906403Abstract: Provided is a collected current monitoring device enabling an analysis of collected current in each current collector while allowing a reduced equipment cost. The collected current monitoring device of the present disclosure is installed in a railroad vehicle including current collectors, main transformers, and main converters.Type: GrantFiled: October 28, 2019Date of Patent: February 2, 2021Assignee: Central Japan Railway CompanyInventors: Yuichi Ahiko, Kotaro Nakamura, Hiroki Shimoyama
-
Patent number: 10828988Abstract: Provided is a collected current monitoring device. A transformer current acquisition unit acquires a current value Ip of a current flowing through a part of a plurality of transformers. A total collected current calculation unit calculates a current value Iall of a collected current supplied by a plurality of current collectors from the current value Ip by using a following Equation (1): Iall=Ip×(Mall/Mp). A collected current acquisition unit acquires a current value IX of a collected current supplied by the current collector(s) other than one current collector. The collected current calculation unit calculates a current value IY of a collected current supplied by the one current collector by subtracting the current value IX from the current value Iall.Type: GrantFiled: March 1, 2017Date of Patent: November 10, 2020Assignee: CENTRAL JAPAN RAILWAY COMPANYInventors: Yuichi Ahiko, Kotaro Nakamura, Hiroki Shimoyama
-
Publication number: 20200141985Abstract: Provided is a collected current monitoring device enabling an analysis of collected current in each current collector while allowing a reduced equipment cost. The collected current monitoring device of the present disclosure is installed in a railroad vehicle including current collectors, main transformers, and main converters.Type: ApplicationFiled: October 28, 2019Publication date: May 7, 2020Applicant: Central Japan Railway CompanyInventors: Yuichi Ahiko, Kotaro Nakamura, Hiroki Shimoyama
-
Publication number: 20200047621Abstract: The present disclosure provides a collected current monitoring device installed on a railroad vehicle comprising a first current collector and a second current collector. The collected current monitoring device comprises a detector that detects a first current flowing to the first current collector and a second current flowing to the second current collector, and a determiner that determines whether it is necessary to control collected current of the railroad vehicle based on the first current and the second current detected by the detector. The determiner determines that it is necessary to control the collected current when a sum of a first non-energized time during which the first current is not flowing and a second non-energized time during which the second current is not flowing in a specified counting time exceeds a threshold value.Type: ApplicationFiled: August 7, 2019Publication date: February 13, 2020Inventors: Kotaro Nakamura, Hiroki Shimoyama, Shota Mizuno, Yoshitsugu Morita, Ryota Shinmura
-
Publication number: 20190391189Abstract: A collected current monitoring device is provided which includes a current-value obtaining unit that obtains a current value I1 and a current value I2, a first RMS-calculation unit that calculates a root mean square RMS1, a second RMS-calculation unit that calculates a root mean square RMS2, an Iu calculation unit that calculates an imbalance current Iu, a change calculation unit that calculates an amount of change ?Iu, an average calculation unit that calculates a time average value ave?Iu, a determining unit that determines whether the time average value ave?Iu is larger than a threshold value, and a signal output unit that outputs an abnormality signal when the time average value ave?Iu is larger than the threshold value.Type: ApplicationFiled: June 20, 2019Publication date: December 26, 2019Inventors: Hironobu Sunami, Kazuki Tanaka, Yoshitsugu Morita, Isamu Makara, Yuichi Ahiko, Kotaro Nakamura, Hiroki Shimoyama
-
Patent number: 10377240Abstract: A collected-current monitoring device includes a current-value obtaining unit for obtaining current values I1 and I2; a first RMS-calculation unit for calculating a root mean square (RMS) 1 of the current value I1 at a window width W; a second RMS-calculation unit for calculating a root mean square (RMS) 2 of the current value I2 at the window width W; a determining unit for determining whether a combination of the RMS 1 and the RMS 2 satisfies an abnormality condition; an abnormality-signal output unit for outputting an abnormality signal when the abnormality condition is satisfied; an information-obtaining unit for obtaining railway vehicle information; and a setting unit for setting a set-parameter that includes at least one of the window width W or the abnormality condition depending on the railway vehicle information.Type: GrantFiled: November 1, 2016Date of Patent: August 13, 2019Assignee: CENTRAL JAPAN RAILWAY COMPANYInventors: Yuichi Ahiko, Kotaro Nakamura, Hiroki Shimoyama
-
Patent number: 10343526Abstract: A collected-current monitoring device includes a current-value obtaining unit for obtaining current values I1 and I2; a first RMS-calculation unit for calculating a root mean square (RMS) 1 of the current value I1 at a window width W; a second RMS-calculation unit for calculating a root mean square (RMS) 2 of the current value I2 at the window width W; a determining unit for determining whether a combination of the RMS 1 and the RMS 2 satisfies an abnormality condition; an abnormality-signal output unit for outputting an abnormality signal when the abnormality condition is satisfied; an information-obtaining unit for obtaining railway vehicle information; and a setting unit for setting a set-parameter that includes at least one of the window width W or the abnormality condition depending on the railway vehicle information.Type: GrantFiled: November 1, 2016Date of Patent: July 9, 2019Assignee: CENTRAL JAPAN RAILWAY COMPANYInventors: Yuichi Ahiko, Kotaro Nakamura, Hiroki Shimoyama
-
Publication number: 20190092172Abstract: Provided is a collected current monitoring device. A transformer current acquisition unit acquires a current value Ip of a current flowing through a part of a plurality of transformers. A total collected current calculation unit calculates a current value Iall of a collected current supplied by a plurality of current collectors from the current value Ip by using a following Equation (1): Iall=Ip×(Mall/Mp). A collected current acquisition unit acquires a current value IX of a collected current supplied by the current collector(s) other than one current collector. The collected current calculation unit calculates a current value IY of a collected current supplied by the one current collector by subtracting the current value IX from the current value Iall.Type: ApplicationFiled: March 1, 2017Publication date: March 28, 2019Inventors: Yuichi AHIKO, Kotaro NAKAMURA, Hiroki SHIMOYAMA
-
Patent number: 10131345Abstract: An object of the invention is to provide a hybrid vehicle control device capable of shortening the time from an engine start request to the engine start. The hybrid vehicle control device is provided with an integrated controller configured to execute processing for starting an engine by bringing a first clutch into engagement, while slipping a second clutch, and by increasing a torque of a motor generator, when it has been determined that an engine start request is present, and a first clutch engagement control section, which is included in the integrated controller and configured to command a start of engagement of the first clutch once the difference between the torque of the motor generator and a second clutch transmitted torque capacity command value becomes greater than or equal to a preset slip prediction determination threshold value after having been determined that the engine start request is present.Type: GrantFiled: December 20, 2013Date of Patent: November 20, 2018Assignee: NISSAN MOTOR CO., LTD.Inventors: Hiroki Matsui, Hiroki Shimoyama
-
Publication number: 20180312064Abstract: A collected-current monitoring device includes a current-value obtaining unit for obtaining current values I1 and I2; a first RMS-calculation unit for calculating a root mean square (RMS) 1 of the current value I1 at a window width W; a second RMS-calculation unit for calculating a root mean square (RMS) 2 of the current value I2 at the window width W; a determining unit for determining whether a combination of the RMS 1 and the RMS 2 satisfies an abnormality condition; an abnormality-signal output unit for outputting an abnormality signal when the abnormality condition is satisfied; an information-obtaining unit for obtaining railway vehicle information; and a setting unit for setting a set-parameter that includes at least one of the window width W or the abnormality condition depending on the railway vehicle information.Type: ApplicationFiled: November 1, 2016Publication date: November 1, 2018Applicant: CENTRAL JAPAN RAILWAY COMPANYInventors: Yuichi AHIKO, Kotaro NAKAMURA, Hiroki SHIMOYAMA
-
Patent number: 10006509Abstract: An adaptive control device is provided for a vehicle starting clutch. The adaptive control device includes a reverse brake as the starting clutch, and a clutch adaptive controller. The reverse brake is interposed between an engine and motor/generator, and the left and right rear wheels and is slip-engaged at a time of starting. The clutch adaptive controller performs clutch adaptive control, in which the reverse brake is subjected to a state in which a temperature of the reverse brake is at, or above, a second threshold for a timed period, at least one time before a vehicle begins to move.Type: GrantFiled: November 20, 2014Date of Patent: June 26, 2018Assignee: Nissan Motor Co., Ltd.Inventors: Hiroki Matsui, Hiroki Shimoyama, Hiromichi Murata
-
Patent number: 10005362Abstract: An electric vehicle control device includes: a plurality of motors capable of transmitting motive power to a wheel of an electric vehicle; an inverter that supplies electric power to drive the motors; and a controller that controls the inverter and compares, when the electric vehicle drives under a certain velocity condition, a q-axis voltage feedforward value VqFF and a q-axis voltage command value Vq* used for controlling driving of the motors, to detect an occurrence of miswire between the motors and the inverter when the following inequation is satisfied: VqFF?1.5·Vq*.Type: GrantFiled: December 15, 2014Date of Patent: June 26, 2018Assignees: Central Japan Railway Company, TOSHIBA INFRASTRUCTURE SYSTEMS & SOLUTIONS CORPORATIONInventors: Hirokazu Kato, Hiroki Shimoyama, Kei Sakanoue, Toshiyuki Uchida, Tomoyuki Makino, Hiroaki Otani, Manato Mori
-
Publication number: 20170328423Abstract: An adaptive control device is provided for a vehicle starting clutch. The adaptive control device includes a reverse brake as the starting clutch, and a clutch adaptive controller. The reverse brake is interposed between an engine and motor/generator, and the left and right rear wheels and is slip-engaged at a time of starting. The clutch adaptive controller performs clutch adaptive control, in which the reverse brake is subjected to a state in which a temperature of the reverse brake is at, or above, a second threshold for a timed period, at least one time before a vehicle begins to move.Type: ApplicationFiled: November 20, 2014Publication date: November 16, 2017Inventors: Hiroki MATSUI, Hiroki SHIMOYAMA, Hiromichi MURATA
-
Patent number: 9654031Abstract: A controlling apparatus includes a storage unit for storing, for each sampling period, a combination of a primary frequency of connected induction motors and the amplitude of a voltage command value, and a gradient detection unit for calculating a value corresponding to an increase in the amplitude of the voltage command value divided by an increase in the primary frequency, and for outputting a failure signal upon determining, when a result of the division is less than a predetermined reference value, that the plurality of induction motors include at least one induction motor having a phase sequence that includes incorrect wiring with respect to the power converter.Type: GrantFiled: June 8, 2016Date of Patent: May 16, 2017Assignees: CENTRAL JAPAN RAILWAY COMPANY, FUJI ELECTRIC CO., LTD.Inventors: Kei Sakanoue, Hirokazu Kato, Hiroki Shimoyama, Tomotaka Nishijima, Junichi Ishii, Yasushi Matsumoto, Toshie Kikuchi
-
Patent number: D867208Type: GrantFiled: October 9, 2017Date of Patent: November 19, 2019Assignees: Hitachi, Ltd., Central Japan Railway Company, A & F CorporationInventors: Yukinobu Abe, Tohru Watanabe, Kiyoshi Morita, Takashi Furukawa, Yuuji Ueno, Yasuhide Ueda, Hajime Ito, Yuichi Ahiko, Hiroki Shimoyama, Tadashi Fujii, Hideto Sanui, Kyohei Suzuki, Tetsuo Fukuda, Ichiro Fukuda
-
Patent number: D884557Type: GrantFiled: December 21, 2016Date of Patent: May 19, 2020Assignees: Hitachi, Ltd., Central Japan Railway Company, A & F CorporationInventors: Yukinobu Abe, Tohru Watanabe, Kiyoshi Morita, Takashi Furukawa, Yuuji Ueno, Hajime Ito, Yuichi Ahiko, Hiroki Shimoyama, Tadashi Fujii, Eiji Sato, Kyohei Suzuki, Tetsuo Fukuda, Ichiro Fukuda