Patents by Inventor Hirokuni Asamizu

Hirokuni Asamizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10876220
    Abstract: A SiC epitaxial wafer includes: a substrate having an off angle of less than 4 degrees; and a SiC epitaxial growth layer disposed on the substrate having the off angle of less than 4 degrees, wherein an Si compound is used for a supply source of Si, and a C compound is used as a supply source of C, for the SiC epitaxial growth layer, wherein the uniformity of carrier density is less than 10%, and the defect density is less than 1 count/cm2; and a C/Si ratio of the Si compound and the C (carbon) compound is within a range of 0.7 to 0.95. There is provide a high-quality SiC epitaxial wafer excellent in film thickness uniformity and uniformity of carrier density, having the small number of surface defects, and capable of reducing costs, also in low-off angle SiC substrates on SiC epitaxial growth.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: December 29, 2020
    Assignee: ROHM CO., LTD.
    Inventor: Hirokuni Asamizu
  • Patent number: 10658557
    Abstract: A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: May 19, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Shuji Nakamura, Steven P. DenBaars, Hirokuni Asamizu
  • Publication number: 20200149188
    Abstract: A SiC epitaxial wafer includes: a substrate having an off angle of less than 4 degrees; and a SiC epitaxial growth layer disposed on the substrate having the off angle of less than 4 degrees, wherein an Si compound is used for a supply source of Si, and a C compound is used as a supply source of C, for the SiC epitaxial growth layer, wherein the uniformity of carrier density is less than 10%, and the defect density is less than 1 count/cm2; and a C/Si ratio of the Si compound and the C (carbon) compound is within a range of 0.7 to 0.95. There is provide a high-quality SiC epitaxial wafer excellent in film thickness uniformity and uniformity of carrier density, having the small number of surface defects, and capable of reducing costs, also in low-off angle SiC substrates on SiC epitaxial growth.
    Type: Application
    Filed: January 10, 2020
    Publication date: May 14, 2020
    Inventor: Hirokuni ASAMIZU
  • Patent number: 10644213
    Abstract: A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: May 5, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Shuji Nakamura, Steven P. DenBaars, Hirokuni Asamizu
  • Patent number: 10593854
    Abstract: A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: March 17, 2020
    Assignee: The Regents of the University of California
    Inventors: Shuji Nakamura, Steven P. DenBaars, Hirokuni Asamizu
  • Patent number: 10570529
    Abstract: A SiC epitaxial wafer includes: a substrate having an off angle of less than 4 degrees; and a SiC epitaxial growth layer disposed on the substrate having the off angle of less than 4 degrees, wherein an Si compound is used for a supply source of Si, and a C compound is used as a supply source of C, for the SiC epitaxial growth layer, wherein the uniformity of carrier density is less than 10%, and the defect density is less than 1 count/cm2; and a C/Si ratio of the Si compound and the C (carbon) compound is within a range of 0.7 to 0.95. There is provide a high-quality SiC epitaxial wafer excellent in film thickness uniformity and uniformity of carrier density, having the small number of surface defects, and capable of reducing costs, also in low-off angle SiC substrates on SiC epitaxial growth.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: February 25, 2020
    Assignee: ROHM CO., LTD.
    Inventor: Hirokuni Asamizu
  • Patent number: 10454010
    Abstract: A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: October 22, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Shuji Nakamura, Steven P. DenBaars, Hirokuni Asamizu
  • Publication number: 20190273194
    Abstract: A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.
    Type: Application
    Filed: January 3, 2019
    Publication date: September 5, 2019
    Applicant: The Regents of the University of California
    Inventors: Shuji Nakamura, Steven P. DenBaars, Hirokuni Asamizu
  • Publication number: 20190257001
    Abstract: A SiC epitaxial wafer includes: a substrate having an off angle of less than 4 degrees; and a SiC epitaxial growth layer disposed on the substrate having the off angle of less than 4 degrees, wherein an Si compound is used for a supply source of Si, and a C compound is used as a supply source of C, for the SiC epitaxial growth layer, wherein the uniformity of carrier density is less than 10%, and the defect density is less than 1 count/cm2; and a C/Si ratio of the Si compound and the C (carbon) compound is within a range of 0.7 to 0.95. There is provide a high-quality SiC epitaxial wafer excellent in film thickness uniformity and uniformity of carrier density, having the small number of surface defects, and capable of reducing costs, also in low-off angle SiC substrates on SiC epitaxial growth.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 22, 2019
    Inventor: Hirokuni ASAMIZU
  • Patent number: 10323335
    Abstract: A SiC epitaxial wafer includes: a substrate having an off angle of less than 4 degrees; and a SiC epitaxial growth layer disposed on the substrate having the off angle of less than 4 degrees, wherein an Si compound is used for a supply source of Si, and a C compound is used as a supply source of C, for the SiC epitaxial growth layer, wherein the uniformity of carrier density is less than 10%, and the defect density is less than 1 count/cm2; and a C/Si ratio of the Si compound and the C (carbon) compound is within a range of 0.7 to 0.95. There is provide a high-quality SiC epitaxial wafer excellent in film thickness uniformity and uniformity of carrier density, having the small number of surface defects, and capable of reducing costs, also in low-off angle SiC substrates on SiC epitaxial growth.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: June 18, 2019
    Assignee: ROHM CO., LTD.
    Inventor: Hirokuni Asamizu
  • Patent number: 10217916
    Abstract: A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: February 26, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Shuji Nakamura, Steven P. DenBaars, Hirokuni Asamizu
  • Publication number: 20180202070
    Abstract: A SiC epitaxial wafer includes: a substrate having an off angle of less than 4 degrees; and a SiC epitaxial growth layer disposed on the substrate having the off angle of less than 4 degrees, wherein an Si compound is used for a supply source of Si, and a C compound is used as a supply source of C, for the SiC epitaxial growth layer, wherein the uniformity of carrier density is less than 10%, and the defect density is less than 1 count/cm2; and a C/Si ratio of the Si compound and the C (carbon) compound is within a range of 0.7 to 0.95. There is provide a high-quality SiC epitaxial wafer excellent in film thickness uniformity and uniformity of carrier density, having the small number of surface defects, and capable of reducing costs, also in low-off angle SiC substrates on SiC epitaxial growth.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Inventor: Hirokuni ASAMIZU
  • Publication number: 20160064488
    Abstract: A nitride based semiconductor device includes: a substrate; a first buffer layer disposed on the substrate; a second buffer layer disposed on the first buffer layer; a third buffer layer disposed on the second buffer layer, the third buffer layer including an AlGaN-based nitride semiconductor; a fourth buffer layer disposed on the third buffer layer, the fourth buffer layer including a GaN-based nitride semiconductor; a barrier layer disposed on the fourth buffer layer, the barrier layer including an AlGaN-based nitride semiconductor; and a source electrode and a drain electrode, each disposed on the barrier layer, and a gate electrode disposed between the source electrode and the drain electrode, wherein the third buffer layer is subjected to lattice relaxation. There can be provided a nitride based semiconductor device capable of reducing a leakage current and improving breakdown capability.
    Type: Application
    Filed: November 6, 2015
    Publication date: March 3, 2016
    Applicant: ROHM CO., LTD.
    Inventors: Shinya TAKADO, Norikazu ITO, Junichi KASHIWAGI, Hirokuni ASAMIZU
  • Publication number: 20140353707
    Abstract: A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 4, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Shuji Nakamura, Steven P. DenBaars, Hirokuni Asamizu
  • Patent number: 8835959
    Abstract: A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: September 16, 2014
    Assignee: The Regents of the University of California
    Inventors: Shuji Nakamura, Steven P. DenBaars, Hirokuni Asamizu
  • Publication number: 20140191244
    Abstract: A method of controlled p-type conductivity in (Al,In,Ga,B)N semiconductor crystals. Examples include {10 11} GaN films deposited on {100} MgAl2O4 spinel substrate miscut in the <011> direction. Mg atoms may be intentionally incorporated in the growing semipolar nitride thin film to introduce available electronic states in the band structure of the semiconductor crystal, resulting in p-type conductivity. Other impurity atoms, such as Zn or C, which result in a similar introduction of suitable electronic states, may also be used.
    Type: Application
    Filed: March 12, 2014
    Publication date: July 10, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: John F. Kaeding, Hitoshi Sato, Michael Iza, Hirokuni Asamizu, Hong Zhong, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8709925
    Abstract: A method of controlled p-type conductivity in (Al,In,Ga,B)N semiconductor crystals. Examples include {10 11} GaN films deposited on {100} MgAl2O4 spinel substrate miscut in the <011> direction. Mg atoms may be intentionally incorporated in the growing semipolar nitride thin film to introduce available electronic states in the band structure of the semiconductor crystal, resulting in p-type conductivity. Other impurity atoms, such as Zn or C, which result in a similar introduction of suitable electronic states, may also be used.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: April 29, 2014
    Assignee: The Regents of the University of California
    Inventors: John F. Kaeding, Hitoshi Sato, Michael Iza, Hirokuni Asamizu, Hong Zhong, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8368109
    Abstract: An (Al,Ga,In)N-based light emitting diode (LED), comprising a p-type surface of the LED bonded with a transparent submount material to increase light extraction at the p-type surface, wherein the LED is a substrateless membrane.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: February 5, 2013
    Assignee: The Regents of the University of California
    Inventors: Kenji Iso, Hirokuni Asamizu, Makoto Saito, Hitoshi Sato, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8294166
    Abstract: A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: October 23, 2012
    Assignee: The Regents of the University of California
    Inventors: Shuji Nakamura, Steven P. DenBaars, Hirokuni Asamizu
  • Publication number: 20120187415
    Abstract: A method of controlled p-type conductivity in (Al,In,Ga,B)N semiconductor crystals. Examples include {10 11} GaN films deposited on {100} MgAl2O4 spinel substrate miscut in the <011> direction. Mg atoms may be intentionally incorporated in the growing semipolar nitride thin film to introduce available electronic states in the band structure of the semiconductor crystal, resulting in p-type conductivity. Other impurity atoms, such as Zn or C, which result in a similar introduction of suitable electronic states, may also be used.
    Type: Application
    Filed: April 5, 2012
    Publication date: July 26, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: John F. Kaeding, Hitoshi Sato, Michael Iza, Hirokuni Asamizu, Hong Zhong, Steven P. DenBaars, Shuji Nakamura