Patents by Inventor Hiromasa Noborio

Hiromasa Noborio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11837415
    Abstract: A solid electrolytic capacitor comprising a capacitor element, anode lead extending from a surface of the capacitor element, an anode termination that is in electrical connection with the anode lead, a cathode termination that is in electrical connection with the solid electrolyte, and a casing material that encapsulates the capacitor element and anode lead is provided. A barrier coating is disposed on at least a portion of the capacitor element and is in contact with the casing material. The coating contains a polymeric material that includes a fluorinated component and a non-fluorinated component. The polymeric material has a glass transition temperature of from about 10° C. to about 120° C. and a thermal decomposition temperature of about 200° C. to about 300° C.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: December 5, 2023
    Assignee: KYOCERA AVX Components Corpration
    Inventors: Jan Petrzilek, Hiromasa Noborio, Jiri Navratil, Junichi Murakami
  • Publication number: 20220230815
    Abstract: A solid electrolytic capacitor comprising a capacitor element, anode lead extending from a surface of the capacitor element, an anode termination that is in electrical connection with the anode lead, a cathode termination that is in electrical connection with the solid electrolyte, and a casing material that encapsulates the capacitor element and anode lead is provided. A barrier coating is disposed on at least a portion of the capacitor element and is in contact with the casing material. The coating contains a polymeric material that includes a fluorinated component and a non-fluorinated component. The polymeric material has a glass transition temperature of from about 10° C. to about 120° C. and a thermal decomposition temperature of about 200° C. to about 300° C.
    Type: Application
    Filed: January 7, 2022
    Publication date: July 21, 2022
    Inventors: Jan Petrzilek, Hiromasa Noborio, Jiri Navratil, Junichi Murakami
  • Patent number: 9892862
    Abstract: A solid electrolytic capacitor that contains an anode body formed from an electrically conductive powder, dielectric located over and/or within the anode body, an adhesion coating overlying the dielectric, and a solid electrolyte overlying the adhesion coating is provided. The powder has a high specific charge and in turn a relative dense packing configuration. Despite being formed from such a powder, the present inventors have discovered that the conductive polymer can be readily impregnated into the pores of the anode. This is accomplished, in part, through the use of a discontinuous precoat layer in the adhesion coating that overlies the dielectric. The precoat layer contains a plurality of discrete nanoprojections of a manganese oxide (e.g., manganese dioxide).
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: February 13, 2018
    Assignee: AVX Corporation
    Inventors: Kiyofumi Aoki, Hiromasa Noborio, Junya Tatsuno, Koji Inazawa
  • Patent number: 9472350
    Abstract: A solid electrolytic capacitor that contains an anode body, dielectric located over and/or within the anode body, an adhesion coating overlying the dielectric, and a solid electrolyte overlying the dielectric and adhesion coating that contains a conductive polymer. The adhesion coating is multi-layered and employs a resinous layer in combination with a discontinuous layer containing a plurality of discrete nanoprojections of a manganese oxide (e.g., manganese dioxide).
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: October 18, 2016
    Assignee: AVX Corporation
    Inventors: Kiyofumi Aoki, Hiromasa Noborio, Junya Tatsuno, Koji Inazawa
  • Publication number: 20140334067
    Abstract: A solid electrolytic capacitor that contains an anode body formed from an electrically conductive powder, dielectric located over and/or within the anode body, an adhesion coating overlying the dielectric, and a solid electrolyte overlying the adhesion coating is provided. The powder has a high specific charge and in turn a relative dense packing configuration. Despite being formed from such a powder, the present inventors have discovered that the conductive polymer can be readily impregnated into the pores of the anode. This is accomplished, in part, through the use of a discontinuous precoat layer in the adhesion coating that overlies the dielectric. The precoat layer contains a plurality of discrete nanoprojections of a manganese oxide (e.g., manganese dioxide).
    Type: Application
    Filed: May 1, 2014
    Publication date: November 13, 2014
    Applicant: AVX Corporation
    Inventors: Kiyofumi Aoki, Hiromasa Noborio, Junya Tatsuno, Koji Inazawa
  • Publication number: 20140334068
    Abstract: A solid electrolytic capacitor that contains an anode body, dielectric located over and/or within the anode body, an adhesion coating overlying the dielectric, and a solid electrolyte overlying the dielectric and adhesion coating that contains a conductive polymer. The adhesion coating is multi-layered and employs a resinous layer in combination with a discontinuous layer containing a plurality of discrete nanoprojections of a manganese oxide (e.g., manganese dioxide).
    Type: Application
    Filed: May 1, 2014
    Publication date: November 13, 2014
    Applicant: AVX Corporation
    Inventors: Kiyofumi Aoki, Hiromasa Noborio, Junya Tatsuno, Koji Inazawa