Patents by Inventor Hiromi Koizumi

Hiromi Koizumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7435330
    Abstract: A heavy oil reforming method which reforms a heavy oil to give a fuel suitable for a gas turbine, eliminates sulfur and vanadium, i.e., harmful components, from a heavy oil, and enables almost all the hydrocarbons in the heavy oil to be used in gas turbine combustion; an apparatus therefor; and a gas turbine power generation system using the reformed heavy oil as fuel is disclosed. The method includes reacting a heavy oil with supercritical water and then with a scavenger for sulfur and vanadium to eliminate sulfur and vanadium from the heavy oil.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: October 14, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Nobuyuki Hokari, Tomohiko Miyamoto, Hirokazu Takahashi, Atsushi Morihara, Hiromi Koizumi
  • Publication number: 20080099373
    Abstract: The reforming of heavy oil with supercritical water or subcritical water is accomplished by mixing together supercritical water, heavy oil, and oxidizing agent, thereby oxidizing vanadium in heavy oil with the oxidizing agent at the time of treatment with supercritical water and separate vanadium oxide. The separated vanadium oxide is removed by the scavenger after treatment with supercritical water. In this way it is possible to solve the long-standing problem with corrosion of turbine blades by vanadium which arises when heavy oil is used as gas turbine fuel.
    Type: Application
    Filed: June 11, 2007
    Publication date: May 1, 2008
    Inventors: Nobuyuki Hokari, Tomohiko Miyamoto, Hirokazu Takahashi, Hiromi Koizumi
  • Patent number: 7264710
    Abstract: The reforming of heavy oil with supercritical water or subcritical water is accomplished by mixing together supercriticai water, heavy oil, and oxidizing agent, thereby oxidizing vanadium in heavy oil with the oxidizing agent at the time of treatment with supercritical water and separate vanadium oxide. The separated vanadium oxide is removed by the scavenger after treatment with supercritical water. In this way it is possible to solve the long-standing problem with corrosion of turbine blades by vanadium which arises when heavy oil is used as gas turbine fuel.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: September 4, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Nobuyuki Hokari, Tomohiko Miyamoto, Hirokazu Takahashi, Hiromi Koizumi
  • Publication number: 20070144941
    Abstract: The reforming of heavy oil with supercritical water or subcritical water is accomplished by mixing together supercritical water, heavy oil, and oxidizing agent, thereby oxidizing vanadium in heavy oil with the oxidizing agent at the time of treatment with supercritical water and separate vanadium oxide. The separated vanadium oxide is removed by the scavenger after treatment with supercritical water. In this way it is possible to solve the long-standing problem with corrosion of turbine blades by vanadium which arises when heavy oil is used as gas turbine fuel.
    Type: Application
    Filed: February 1, 2007
    Publication date: June 28, 2007
    Inventors: Nobuyuki Hokari, Tomohiko Miyamoto, Hirokazu Takahashi, Hiromi Koizumi
  • Publication number: 20070003897
    Abstract: In a burner for injecting mixed gas fuel containing at least one of hydrogen and carbon monoxide into a combustion chamber of a gas turbine combustor, the burner includes a fuel nozzle for startup from which liquid fuel is injected into the combustion chamber, and a mixed fuel nozzle disposed around the fuel nozzle for injecting the mixed gas fuel. An air swirler is disposed at a downstream end of the mixed fuel nozzle and has a plurality of flow passages from which compressed air is injected into the combustion chamber, and the mixed fuel nozzle has injection ports disposed in the inner peripheral side of the flow passages of the air swirler. Cooling holes formed in the nozzle surface and positioned to face the combustion chamber introduce a part of the mixed gas fuel injected from the mixed fuel nozzle into the combustion chamber.
    Type: Application
    Filed: June 23, 2006
    Publication date: January 4, 2007
    Inventors: Hiromi Koizumi, Hiroshi Inoue, Toshifumi Sasao, Isao Takehara
  • Patent number: 7143583
    Abstract: A gas turbine combustor comprises a premixed combustion burner disposed on the periphery of a pilot burner, an approximately cylindrical combustor liner disposed on the downstream side of the premixed combustion burner, which defines a combustion chamber in the liner. The gas turbine combustor is characterized by further comprising flame stabilizers radially disposed at the exit of the premixed combustion burner, and a fuel injection means with which the pilot burner is provided injects at least one of gas fuel and liquid fuel, in which a plurality of air nozzles are provided which are located outside the pilot burner and inside the premixed combustion burner, and which spout out air into the combustion chamber. Adequate combustion can be accomplished with a combustor which is capable of using gas fuel and liquid fuel, and at the same time, NOx can be reduced.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: December 5, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Akinori Hayashi, Shinichi Inage, Hiromi Koizumi, Isao Takehara, Kazuyuki Ito, Toshifumi Sasao, Hidetaro Murata
  • Publication number: 20060011511
    Abstract: The purpose of the invention is to provide a heavy oil reforming method which reforms a heavy oil to give a fuel suitable for a gas turbine, eliminates sulfur and vanadium, i.e., harmful components, from a heavy oil, and enables almost all the hydrocarbons in the heavy oil to be used in gas turbine combustion; an apparatus therefor; and a gas turbine power generation system using the reformed heavy oil as fuel. This method comprises reacting a heavy oil with supercritical water and then with a scavenger for sulfur and vanadium to eliminate sulfur and vanadium from the heavy oil. The apparatus for reforming a heavy oil is equipped with a reactor for reacting a heavy oil with supercritical water, a scavenging apparatus filled with a scavenger for scavenging sulfur and vanadium in the heavy oil, and a connecting pipe for connecting the reactor and the scavenging apparatus.
    Type: Application
    Filed: September 13, 2005
    Publication date: January 19, 2006
    Inventors: Nobuyuki Hokari, Tomohiko Miyamoto, Hirokazu Takahashi, Atsushi Morihara, Hiromi Koizumi
  • Publication number: 20050072137
    Abstract: The reforming of heavy oil with supercritical water or subcritical water is accomplished by mixing together supercritical water, heavy oil, and oxidizing agent, thereby oxidizing vanadium in heavy oil with the oxidizing agent at the time of treatment with supercritical water and separate vanadium oxide. The separated vanadium oxide is removed by the scavenger after treatment with supercritical water. In this way it is possible to solve the long-standing problem with corrosion of turbine blades by vanadium which arises when heavy oil is used as gas turbine fuel.
    Type: Application
    Filed: October 7, 2003
    Publication date: April 7, 2005
    Inventors: Nobuyuki Hokari, Tomohiko Miyamoto, Hirokazu Takahashi, Atsushi Morihara, Hiromi Koizumi
  • Publication number: 20040035114
    Abstract: A gas turbine combustor comprises a premixed combustion burner disposed on the periphery of a pilot burner, an approximately cylindrical combustor liner disposed on the downstream side of the premixed combustion burner, which defines a combustion chamber in the liner. The gas turbine combustor is characterized by further comprising flame stabilizers radially disposed at the exit of the premixed combustion burner, and a fuel injection means with which the pilot burner is provided injects at least one of gas fuel and liquid fuel, in which a plurality of air nozzles are provided which are located outside the pilot burner and inside the premixed combustion burner, and which spout out air into the combustion chamber. Adequate combustion can be accomplished with a combustor which is capable of using gas fuel and liquid fuel, and at the same time, NOx can be reduced.
    Type: Application
    Filed: March 7, 2003
    Publication date: February 26, 2004
    Inventors: Akinori Hayashi, Shinichi Inage, Hiromi Koizumi, Isao Takehara, Kazuyuki Ito, Toshifumi Sasao, Hidetaro Murata
  • Publication number: 20030168381
    Abstract: The reforming of heavy oil with supercritical water or subcritical water is accomplished by mixing together supercritical water, heavy oil, and oxidizing agent, thereby oxidizing vanadium in heavy oil with the oxidizing agent at the time of treatment with supercritical water and separate vanadium oxide. The separated vanadium oxide is removed by the scavenger after treatment with supercritical water. In this way it is possible to solve the long-standing problem with corrosion of turbine blades by vanadium which arises when heavy oil is used as gas turbine fuel.
    Type: Application
    Filed: September 18, 2002
    Publication date: September 11, 2003
    Inventors: Nobuyuki Hokari, Tomohiko Miyamoto, Hirokazu Takahashi, Hiromi Koizumi
  • Patent number: 5836164
    Abstract: A gas turbine combustor includes a diffusion combustor arranged at an axis portion of a combustion chamber for effecting diffusion combustion, a plurality of first premixing combustors arranged at an outer periphery of the diffusion combustor for effecting premixed combustion, each of the plurality of first premixing combustors being formed so that a mixture outlet end thereof projects more downstream than a fuel outlet end of the diffusion combustor, and a plurality of second premixing combustors each formed so that a mixture outlet thereof projects more downstream than the mixture outlet end of the first combustor, wherein the first premixing combustors and the second premixing combustors are arranged alternately at the outer periphery of the diffusion combustor, and wherein a swirler is provided on the first premixing combustor in the vicinity of the mixture outlet end thereof for swirling mixture.
    Type: Grant
    Filed: January 29, 1996
    Date of Patent: November 17, 1998
    Assignee: Hitachi, Ltd.
    Inventors: Satoshi Tsukahara, Shohei Yoshida, Masahiko Yamagishi, Kazumi Iwai, Hiromi Koizumi, Yoichi Yoshinaga
  • Patent number: 5259182
    Abstract: A combustion apparatus comprises a combustor liner forming a combustion chamber, and a swirler for introducing a fuel gas into the combustion chamber in the form of a swirl. The combustor liner has an air film forming device provided on the wall thereof and capable of forming a film of cooling air on the inner peripheral wall of the combustor liner so as to protect the combustor liner from the hot combustion gas in the combustion chamber. The air film forming means is formed such that the flowing direction of the air forming the film becomes the same direction as the swirling direction of the combustion gas, so that the film of the cooling air is not broken by the hot combustion gas.
    Type: Grant
    Filed: February 12, 1993
    Date of Patent: November 9, 1993
    Assignee: Hitachi, Ltd.
    Inventors: Kazumi Iwai, Hiromi Koizumi, Kazuhiko Kumata, Yoshikazu Moritomo
  • Patent number: 4993222
    Abstract: A method and an apparatus for burning gaseous fuel, the composition of the fuel varying at times, wherein; main injection ports and sub-injection ports are arranged in such positions that the fuel injected through the sub-injection ports may be ignited by a flame formed from the fuel injected through the main injection ports; fuel passes are provided or conducting the gaseous fuel separately to the two groups of injection ports; and control valve is provided for adjusting the ratio of the fuel flow to the main injection ports to the fuel flow to the sub-injection ports; whereby the proportion of the fuel to be injected through the main injection ports is increased as the rate of burning the gaseous fuel increases.
    Type: Grant
    Filed: September 6, 1989
    Date of Patent: February 19, 1991
    Assignee: Hitachi, Ltd.
    Inventors: Kazumi Iwai, Akira Arai, Hiromi Koizumi, Katsuo Wada
  • Patent number: 4926645
    Abstract: A catalytic combustor for a gas turbine comprises catalyst layers arranged in two stages in a direction of gas flow. Fuel supply nozzles are disposed close to and upstream of the downstream catalyst layer. A substantially constant amount of fuel is supplied from the fuel supply nozzles to form pilot flames by the downstream catalyst layer, which are above 1000 degrees C. and below 1500 degrees C. Combustible component having passed through the upstream catalyst layer is burned by the pilot flames.
    Type: Grant
    Filed: July 31, 1989
    Date of Patent: May 22, 1990
    Assignee: Hitachi, Ltd.
    Inventors: Kazumi Iwai, Hiromi Koizumi, Katsuo Wada
  • Patent number: 4890453
    Abstract: A method and an apparatus for burning gaseous fuel, the composition of the fuel varying at times, wherein; main injection ports and sub-injection ports are arranged in such positions that the fuel injected through the sub-injection ports may be ignited by a flame formed from the fuel injected through the main injection ports; fuel passes are provided for conducting the gaseous fuel separately to the two groups of injection ports; and a control valve is provided for adjusting the ratio of the fuel flow to the main injection ports to the fuel flow to the sub-injection ports; whereby the proportion of the fuel to be injected through the main injection ports is increased as the rate of burning the gaseous fuel increases.
    Type: Grant
    Filed: February 8, 1988
    Date of Patent: January 2, 1990
    Assignee: Hitachi, Ltd.
    Inventors: Kazumi Iwai, Akira Arai, Hiromi Koizumi, Katsuo Wada