Patents by Inventor Hiromi Seo

Hiromi Seo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10608181
    Abstract: A method for manufacturing a light-emitting element, in particular, a method for manufacturing a light-emitting element with high emission efficiency is provided. In the method for manufacturing a light-emitting element that includes a light-emitting layer containing a host material and a light-emitting material that is an organic compound or an organic metal complex, the light-emitting layer is formed by co-evaporation of the light-emitting material and the host material, and the light-emitting layer is deposited by co-evaporation while the percentage of the partial pressure of carbon dioxide with respect to the total pressure in an evaporation chamber for the co-evaporation is kept higher than that in the air.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: March 31, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Seo, Hiromi Seo, Tsunenori Suzuki, Hiromitsu Kido
  • Patent number: 10600972
    Abstract: A light-emitting element which has low driving voltage and high emission efficiency, is provided. The light-emitting element includes, between a pair of electrodes, a hole-transport layer and a light-emitting layer over the hole-transport layer. The light-emitting layer contains a first organic compound having an electron-transport property, a second organic compound having a hole-transport property, and a light-emitting third organic compound converting triplet excitation energy into light emission. A combination of the first organic compound and the second organic compound forms an exciplex. The hole-transport layer contains at least a fourth organic compound whose HOMO level is lower than or equal to that of the second organic compound and a fifth organic compound whose HOMO level is higher than that of the second organic compound.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: March 24, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromi Seo, Satoshi Seo, Satoko Shitagaki
  • Patent number: 10573837
    Abstract: A light-emitting element that includes a fluorescent material and has a high emission efficiency is provided. A light-emitting element in which a delayed fluorescence component due to TTA accounts for a high proportion of emissive components is provided. A novel light-emitting device with a high emission efficiency and a low power consumption is provided. A light-emitting element includes an anode, a cathode, and an EL layer. The EL layer includes a light-emitting layer including a host material and an electron-transport layer including a first material in contact with the light-emitting layer. The LUMO level of the first material is lower than that of the host material. The proportion of a delayed fluorescence component due to TTA is greater than or equal to 10 percent of the light emission from the EL layer. The proportion of the delayed fluorescence component due to TTA may be greater than or equal to 15 percent of the light emission.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: February 25, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoaki Hashimoto, Tsunenori Suzuki, Satoshi Seo, Hiromi Seo, Hiromitsu Kido
  • Publication number: 20200020870
    Abstract: A multicolor light-emitting element using fluorescence and phosphorescence, which has a small number of manufacturing steps owing to a relatively small number of layers to be formed and is advantageous for practical application can be provided. In addition, a multicolor light-emitting element using fluorescence and phosphorescence, which has favorable emission efficiency is provided. A light-emitting element which includes a light-emitting layer having a stacked-layer structure of a first light-emitting layer exhibiting light emission from a first exciplex and a second light-emitting layer exhibiting phosphorescence is provided.
    Type: Application
    Filed: July 19, 2019
    Publication date: January 16, 2020
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Seo, Hiromi Seo, Tatsuyoshi Takahashi, Takahiro Ishisone
  • Patent number: 10535823
    Abstract: A composite material which includes an organic compound and an inorganic compound and has a high carrier-transport property is provided. A composite material having a good property of carrier injection into an organic compound is provided. A composite material in which light absorption due to charge-transfer interaction is unlikely to occur is provided. A composite material having a high visible-light-transmitting property is provided. A composite material including a hydrocarbon compound and an inorganic compound exhibiting an electron-accepting property with respect to the hydrocarbon compound is provided. The hydrocarbon compound has a substituent bonded to a naphthalene skeleton, a phenanthrene skeleton, or a triphenylene skeleton and has a molecular weight of 350 to 2000, and the substituent has one or more rings selected from a benzene ring, a naphthalene ring, a phenanthrene ring, and a triphenylene ring.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: January 14, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kaori Ogita, Hiromi Nowatari, Harue Osaka, Takahiro Ushikubo, Satoshi Seo, Takako Takasu
  • Publication number: 20190386236
    Abstract: Light-emitting elements in which an increase of driving voltage can be suppressed are provided. Light-emitting devices whose power consumption is reduced by including such light-emitting elements are also provided. In a light-emitting element having an EL layer between an anode and a cathode, a first layer in which carriers can be produced is formed between the cathode and the EL layer and in contact with the cathode, a second layer which transfers electrons produced in the first layer is formed in contact with the first layer, and a third layer which injects the electrons received from the second layer into the EL layer is formed in contact with the second layer.
    Type: Application
    Filed: September 2, 2019
    Publication date: December 19, 2019
    Inventors: Hiromi NOWATARI, Satoshi SEO, Nobuharu OHSAWA, Tetsuo TSUTSUI
  • Patent number: 10505132
    Abstract: To provide a light-emitting element which uses a fluorescent material as a light-emitting substance and has higher luminous efficiency. To provide a light-emitting element which includes a mixture of a thermally activated delayed fluorescent substance and a fluorescent material. By making the emission spectrum of the thermally activated delayed fluorescent substance overlap with an absorption band on the longest wavelength side in absorption by the fluorescent material in an S1 level of the fluorescent material, energy at an S1 level of the thermally activated delayed fluorescent substance can be transferred to the S1 of the fluorescent material. Alternatively, it is also possible that the S1 of the thermally activated delayed fluorescent substance is generated from part of the energy of a T1 level of the thermally activated delayed fluorescent substance, and is transferred to the S1 of the fluorescent material.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: December 10, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Seo, Hiromi Seo, Tatsuyoshi Takahashi
  • Patent number: 10497880
    Abstract: A novel substance with which an increase in life and emission efficiency of a light-emitting element can be achieved is provided. A carbazole compound having a structure represented by General Formula (G1) is provided. Note that a substituent which makes the HOMO level and the LUMO level of a compound in which a bond of the substituent is substituted with hydrogen deep and shallow, respectively is used as each of substituents in General Formula (G1) (R1, R2, Ar3, and ?3). Further, a subsistent which makes the band gap (Bg) and the T1 level of a compound in which a bond of the substituent is substituted with hydrogen wide and high is used as each of the substituents in General Formula (G1) (R1, R2, Ar3, and ?3).
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: December 3, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue Osaka, Takako Takasu, Hiroshi Kadoma, Yuko Kawata, Satoko Shitagaki, Hiromi Nowatari, Tsunenori Suzuki, Nobuharu Ohsawa, Satoshi Seo
  • Patent number: 10468602
    Abstract: A novel heterocyclic compound is provided. A novel heterocyclic compound that can be used for a light-emitting element is provided. A novel heterocyclic compound that can improve the reliability of a light-emitting element when used for a light-emitting element is provided. A light-emitting element, a light-emitting device, an electronic appliance, or a lighting device which includes the novel heterocyclic compound and is highly reliable is provided. One embodiment of the present invention is a heterocyclic compound represented by a general formula (G0). In the general formula (G0), A represents a dibenzo[f,h]quinoxalinyl group, B represents a substituted or unsubstituted fluorenyl group, and Ar represents a substituted or unsubstituted arylene group having 6 to 25 carbon atoms.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: November 5, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideko Inoue, Yasushi Kitano, Hiromi Seo, Tatsuyoshi Takahashi, Satoshi Seo
  • Patent number: 10446766
    Abstract: A novel organic compound that forms an exciplex emitting light with high efficiency is provided. An organic compound with a triarylamine skeleton in which the three aryl groups of the triarylamine skeleton are a p-biphenyl group, a fluoren-2-yl group, and a phenyl group to which a dibenzofuranyl group or a dibenzothiophenyl group is bonded. By the use of the organic compound and an organic compound with an electron-transport property, an exciplex that emits light with extremely high efficiency can be formed.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: October 15, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kaori Ogita, Satoshi Seo, Hiromi Seo, Tatsuyoshi Takahashi
  • Patent number: 10431752
    Abstract: An organometallic iridium complex that has high emission efficiency and a long lifetime and emits deep red light (emission wavelength: around 700 nm) is provided. The organometallic iridium complex has a ligand that is represented by General Formula (G0) and has at least a dimethyl phenyl group and a quinoxaline skeleton. In the formula, R1 to R3 separately represent an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a phenyl group having an alkyl group having 1 to 6 carbon atoms as a substituent.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: October 1, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideko Inoue, Tomoya Yamaguchi, Hiromi Seo, Tatsuyoshi Takahashi, Satoshi Seo
  • Patent number: 10424755
    Abstract: A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting layer is provided between a pair of electrodes. The light-emitting layer is a stack of a first light-emitting layer, which contains at least a first phosphorescent compound, a first organic compound having an electron-transport property, and a second organic compound having a hole-transport property and is provided on the anode side, and a second light-emitting layer, which contains at least a second phosphorescent compound and the first organic compound having an electron-transport property. A combination of the first organic compound and the second organic compound forms an exciplex.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: September 24, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromi Seo, Satoko Shitagaki, Satoshi Seo, Takahiro Ushikubo, Toshiki Sasaki, Shogo Uesaka
  • Patent number: 10403843
    Abstract: Light-emitting elements in which an increase of driving voltage can be suppressed are provided. Light-emitting devices whose power consumption is reduced by including such light-emitting elements are also provided. In a light-emitting element having an EL layer between an anode and a cathode, a first layer in which carriers can be produced is formed between the cathode and the EL layer and in contact with the cathode, a second layer which transfers electrons produced in the first layer is formed in contact with the first layer, and a third layer which injects the electrons received from the second layer into the EL layer is formed in contact with the second layer.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: September 3, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromi Nowatari, Satoshi Seo, Nobuharu Ohsawa, Tetsuo Tsutsui
  • Publication number: 20190267564
    Abstract: To provide a light-emitting element which uses a fluorescent material as a light-emitting substance and has higher luminous efficiency. To provide a light-emitting element which includes a mixture of a thermally activated delayed fluorescent substance and a fluorescent material. By making the emission spectrum of the thermally activated delayed fluorescent substance overlap with an absorption band on the longest wavelength side in absorption by the fluorescent material in an S1 level of the fluorescent material, energy at an S1 level of the thermally activated delayed fluorescent substance can be transferred to the S1 of the fluorescent material. Alternatively, it is also possible that the S1 of the thermally activated delayed fluorescent substance is generated from part of the energy of a T1 level of the thermally activated delayed fluorescent substance, and is transferred to the S1 of the fluorescent material.
    Type: Application
    Filed: May 15, 2019
    Publication date: August 29, 2019
    Inventors: Satoshi SEO, Hiromi SEO, Tatsuyoshi TAKAHASHI
  • Patent number: 10361389
    Abstract: A multicolor light-emitting element using fluorescence and phosphorescence, which has a small number of manufacturing steps owing to a relatively small number of layers to be formed and is advantageous for practical application can be provided. In addition, a multicolor light-emitting element using fluorescence and phosphorescence, which has favorable emission efficiency is provided. A light-emitting element which includes a light-emitting layer having a stacked-layer structure of a first light-emitting layer exhibiting light emission from a first exciplex and a second light-emitting layer exhibiting phosphorescence is provided.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: July 23, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Seo, Hiromi Seo, Tatsuyoshi Takahashi, Takahiro Ishisone
  • Patent number: 10347847
    Abstract: A novel organic compound that forms an exciplex emitting light with high efficiency is provided. An organic compound with a triarylamine skeleton in which the three aryl groups of the triarylamine skeleton are a p-biphenyl group, a fluoren-2-yl group, and a phenyl group to which a dibenzofuranyl group or a dibenzothiophenyl group is bonded. By the use of the organic compound and an organic compound with an electron-transport property, an exciplex that emits light with extremely high efficiency can be formed.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: July 9, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kaori Ogita, Satoshi Seo, Hiromi Seo, Tatsuyoshi Takahashi
  • Publication number: 20190181357
    Abstract: An organometallic iridium complex having high emission efficiency and high heat resistance and emitting yellow light is provided as a novel substance. The organometallic iridium complex includes iridium and a ligand and includes a structure represented by General Formula (G1). The ligand includes a 5H-indeno[1,2-d]pyrimidine skeleton and an aryl group bonded to the 4-position of the 5H-indeno[1,2-d]pyrimidine skeleton. The 3-position of the 5H-indeno[1,2-d]pyrimidine skeleton and the aryl group are bonded to the iridium. In the formula, Ar represents a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, and each of R1 to R7 independently represents hydrogen or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 13, 2019
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideko Inoue, Tomoya YAMAGUCHI, Hiromi SEO, Satoshi SEO
  • Publication number: 20190173024
    Abstract: A light-emitting element having high emission efficiency is provided. A light-emitting element having a low driving voltage is provided. A novel compound which can be used for a transport layer or as a host material or a light-emitting material of a light-emitting element is provided. A novel compound with a benzofuropyrimidine skeleton is provided. Also provided is a light-emitting element which includes the compound with the benzofuropyrimidine skeleton between a pair of electrodes.
    Type: Application
    Filed: January 23, 2019
    Publication date: June 6, 2019
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideko Inoue, Miki Kanamoto, Hiromi Seo, Satoshi Seo, Tatsuyoshi Takahashi, Tomoka Nakagawa
  • Patent number: 10270051
    Abstract: A light-emitting element is provided. The light-emitting element includes first and second electrodes and an EL layer therebetween. The EL layer includes a light-emitting layer containing first and second substances. The amount of the first substance is larger than that of the second substance. The second substance emits light. Average transition dipole moments of the second substance are divided into three components in x-, y-, and z-directions which are orthogonal to each other. Components parallel to the first or second electrode are assumed to be the components in the x- and y-directions, and a component perpendicular to the first or second electrode is assumed to be the component in the z-direction. The proportion of the component in the z-direction is represented by a, which is less than or equal to 0.2.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: April 23, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Seo, Hiromi Seo, Tsunenori Suzuki, Hiromitsu Kido
  • Publication number: 20190088886
    Abstract: A novel organic compound that forms an exciplex emitting light with high efficiency is provided. An organic compound with a triarylamine skeleton in which the three aryl groups of the triarylamine skeleton are a p-biphenyl group, a fluoren-2-yl group, and a phenyl group to which a dibenzofuranyl group or a dibenzothiophenyl group is bonded. By the use of the organic compound and an organic compound with an electron-transport property, an exciplex that emits light with extremely high efficiency can be formed.
    Type: Application
    Filed: November 21, 2018
    Publication date: March 21, 2019
    Inventors: Kaori OGITA, Satoshi SEO, Hiromi SEO, Tatsuyoshi TAKAHASHI