Patents by Inventor Hiromichi Godo

Hiromichi Godo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110147744
    Abstract: An object is to increase the on-state current of a thin film transistor. A solution is to provide a projection in a back-channel portion of the thin film transistor. The projection is provided so as to be off a tangent in the back-channel portion between a source or a drain and a channel formation region. With the projection, a portion where electric charge is trapped and a path of the on-state current can be apart from each other, so that the on-state current can be increased. The shape of a side surface of the back-channel portion may be curved, or may be represented as straight lines in a cross section. Further, a method for forming such a shape by performing one etching step is provided.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 23, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yasuhiro Jinbo, Hideomi Suzawa, Hiromichi Godo, Shinya Sasagawa
  • Publication number: 20110133178
    Abstract: One object is to provide a p-channel transistor including an oxide semiconductor. Another object is to provide a complementary metal oxide semiconductor (CMOS) structure of an n-channel transistor including an oxide semiconductor and a p-channel transistor including an oxide semiconductor. A p-channel transistor including an oxide semiconductor includes a gate electrode layer, a gate insulating layer, an oxide semiconductor layer, and a source and drain electrode layers in contact with the oxide semiconductor layer. When the electron affinity and the band gap of an oxide semiconductor used for the oxide semiconductor layer in the semiconductor device, respectively, are ? (eV) and Eg (eV), the work function (?m) of the conductor used for the source electrode layer and the drain electrode layer satisfies ?m>?+Eg/2 and the barrier for holes (?Bp) represented by (?+Eg??m) is less than 0.25 eV.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 9, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Daisuke KAWAE, Hiromichi GODO
  • Publication number: 20110127525
    Abstract: An intrinsic or substantially intrinsic semiconductor, which has been subjected to a step of dehydration or dehydrogenation and a step of adding oxygen so that the carrier concentration is less than 1×1012/cm3 is used for an oxide semiconductor layer of an insulated gate transistor, in which a channel region is formed. The length of the channel formed in the oxide semiconductor layer is set to 0.2 ?m to 3.0 ?m an inclusive and the thicknesses of the oxide semiconductor layer and the gate insulating layer are set to 15 nm to 30 nm inclusive and 20 nm to 50 nm inclusive, respectively, or 15 nm to 100 nm inclusive and 10 nm to 20 nm inclusive, respectively. Consequently, a short-channel effect can be suppressed, and the amount of change in threshold voltage can be less than 0.5 V in the range of the above channel lengths.
    Type: Application
    Filed: November 24, 2010
    Publication date: June 2, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Hiromichi Godo, Daisuke Kawae
  • Patent number: 7923730
    Abstract: An impurity element imparting one conductivity type is included in a layer close to a gate insulating film of layers with high crystallinity, so that a channel formation region is formed not in a layer with low crystallinity which is formed at the beginning of film formation but in a layer with high crystallinity which is formed later in a microcrystalline semiconductor film. Further, the layer including an impurity element is used as a channel formation region. Furthermore, a layer which does not include an impurity element imparting one conductivity type or a layer which has an impurity element imparting one conductivity type at an extremely lower concentration than other layers, is provided between a pair of semiconductor films including an impurity element functioning as a source region and a drain region and the layer including an impurity element functioning as a channel formation region.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: April 12, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromichi Godo, Hidekazu Miyairi
  • Publication number: 20110062992
    Abstract: An object is to obtain a desired threshold voltage of a thin film transistor using an oxide semiconductor. Another object is to suppress a change of the threshold voltage over time. Specifically, an object is to apply the thin film transistor to a logic circuit formed using a transistor having a desired threshold voltage. In order to achieve the above object, thin film transistors including oxide semiconductor layers with different thicknesses may be formed over the same substrate, and the thin film transistors whose threshold voltages are controlled by the thicknesses of the oxide semiconductor layers may be used to form a logic circuit. In addition, by using an oxide semiconductor film in contact with an oxide insulating film formed after dehydration or dehydrogenation treatment, a change in threshold voltage over time is suppressed and the reliability of a logic circuit can be improved.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 17, 2011
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichi OKAZAKI, Yoshiaki OIKAWA, Hotaka MARUYAMA, Hiromichi GODO, Shunpei YAMAZAKI
  • Publication number: 20110062435
    Abstract: It is an object to provide a highly reliable thin film transistor with stable electric characteristics, which includes an oxide semiconductor film. The channel length of the thin film transistor including the oxide semiconductor film is in the range of 1.5 ?m to 100 ?m inclusive, preferably 3 ?m to 10 ?m inclusive; when the amount of change in threshold voltage is less than or equal to 3 V, preferably less than or equal to 1.5 V in an operation temperature range of room temperature to 180° C. inclusive or ?25° C. to ?150° C. inclusive, a semiconductor device with stable electric characteristics can be manufactured. In particular, in a display device which is an embodiment of the semiconductor device, display unevenness due to variation in threshold voltage can be reduced.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 17, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Masashi TSUBUKU, Hiromichi GODO
  • Publication number: 20110053343
    Abstract: There are provided a semiconductor device having a structure which can realize not only suppression of a punch-through current but also reuse of a silicon wafer used for bonding, in manufacturing a semiconductor device using an SOI technique, and a manufacturing method thereof. A semiconductor film into which an impurity imparting a conductivity type opposite to that of a source region and a drain region is implanted is formed over a substrate, and a single crystal semiconductor film is bonded to the semiconductor film by an SOI technique to form a stacked semiconductor film. A channel formation region is formed using the stacked semiconductor film, thereby suppressing a punch-through current in a semiconductor device.
    Type: Application
    Filed: November 9, 2010
    Publication date: March 3, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Sho KATO, Fumito ISAKA, Tetsuya KAKEHATA, Hiromichi GODO, Akihisa SHIMOMURA
  • Patent number: 7867873
    Abstract: A method of manufacturing a semiconductor substrate is demonstrated, which enables the formation of a single crystal semiconductor layer on a substrate having an insulating surface. The manufacturing method includes the steps of: ion irradiation of a surface of a single-crystal semiconductor substrate to form a damaged region; laser light irradiation of the single-crystal semiconductor substrate; formation of an insulating layer on the surface of the single-crystal semiconductor substrate; bonding the insulating layer with a substrate having an insulating surface; separation of the single-crystal semiconductor substrate at the damaged region, resulting in a thin single-crystal semiconductor layer on the surface of the substrate having the insulating surface; and laser light irradiation of the surface of the single-crystal semiconductor layer which is formed on the substrate having the insulating surface.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: January 11, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Murakami, Hiromichi Godo, Atsuo Isobe
  • Patent number: 7868328
    Abstract: The present invention provides a semiconductor device capable of being mass-produced and a manufacturing method of the semiconductor device. The present invention also provides a semiconductor device using an extreme thin integrated circuit and a manufacturing method of the semiconductor device. Further, the present invention provides a low power consumption semiconductor device and a manufacturing method of the semiconductor device. According to one aspect of the present invention, a semiconductor device that has a semiconductor nonvolatile memory element transistor over an insulating surface in which a floating gate electrode of the memory transistor is formed by a plurality of conductive particles or semiconductor particles is provided.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: January 11, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Atsuo Isobe, Tetsuji Yamaguchi, Hiromichi Godo
  • Publication number: 20100301346
    Abstract: A thin film transistor in which an effect of photo current is small and an On/Off ratio is high is provided. In a bottom-gate bottom-contact (coplanar) thin film transistor, a channel formation region overlaps with a gate electrode, a first impurity semiconductor layer is provided between the channel formation region and a second impurity semiconductor layer which is in contact with a wiring layer. A semiconductor layer which serves as the channel formation region and the first impurity semiconductor layer preferably overlap with each other in a region where they overlap with the gate electrode. The first impurity semiconductor layer and the second impurity semiconductor layer preferably overlap with each other in a region where they do not overlap with the gate electrode.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 2, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hidekazu MIYAIRI, Yasuhiro JINBO, Hiromichi GODO, Takafumi MIZOGUCHI, Shinobu FURUKAWA
  • Patent number: 7842584
    Abstract: There are provided a semiconductor device having a structure which can realize not only suppression of a punch-through current but also reuse of a silicon wafer used for bonding, in manufacturing a semiconductor device using an SOI technique, and a manufacturing method thereof. A semiconductor film into which an impurity imparting a conductivity type opposite to that of a source region and a drain region is implanted is formed over a substrate, and a single crystal semiconductor film is bonded to the semiconductor film by an SOI technique to form a stacked semiconductor film. A channel formation region is formed using the stacked semiconductor film, thereby suppressing a punch-through current in a semiconductor device.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 30, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Sho Kato, Fumito Isaka, Tetsuya Kakehata, Hiromichi Godo, Akihisa Shimomura
  • Publication number: 20100264412
    Abstract: An object is to provide a transistor including an oxide layer which includes Zn and does not include a rare metal such as In or Ga. Another object is to reduce an off current and stabilize electric characteristics in the transistor including an oxide layer which includes Zn. A transistor including an oxide layer including Zn is formed by stacking an oxide semiconductor layer including insulating oxide over an oxide layer so that the oxide layer is in contact with a source electrode layer or a drain electrode layer with the oxide semiconductor layer including insulating oxide interposed therebetween, whereby variation in the threshold voltage of the transistor can be reduced and electric characteristics can be stabilized.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 21, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Hiromichi GODO, Hideyuki KISHIDA
  • Publication number: 20100258802
    Abstract: An object is to provide an n-channel transistor and a p-channel transistor having a preferred structure using an oxide semiconductor. A first source or drain electrode which is electrically connected to a first oxide semiconductor layer and is formed using a stacked-layer structure including a first conductive layer containing a first material and a second conductive layer containing a second material, and a second source or drain electrode which is electrically connected to a second oxide semiconductor layer and is formed using a stacked-layer structure including a third conductive layer containing the first material and a fourth conductive layer containing the second material are included. The first oxide semiconductor layer is in contact with the first conductive layer of the first source or drain electrode, and the second oxide semiconductor layer is in contact with the third and the fourth conductive layers of the second source or drain electrode.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 14, 2010
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromichi GODO, Takayuki INOUE
  • Patent number: 7812348
    Abstract: A thin-film transistor in which problems with ON-state current and OFF-state current are solved, and a thin-film transistor capable of high-speed operation. The thin-film transistor includes a pair of impurity semiconductor layers in which an impurity element imparting one conductivity type is added to form a source and drain regions, provided with a space therebetween so as to be overlapped with a gate electrode with a gate insulating layer interposed between the gate electrode and the impurity semiconductor layers; a pair of semiconductor layers in which an impurity element which serves as an acceptor is added, overlapped over the gate insulating layers with the gate electrode and the impurity semiconductor layers, and disposed with a space therebetween in a channel length direction; and an amorphous semiconductor layer being in contact with the gate insulating layer and the pair of semiconductor layers and extended between the pair of semiconductor layers.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: October 12, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koji Dairiki, Hidekazu Miyairi, Yoshiyuki Kurokawa, Shunpei Yamazaki, Hiromichi Godo, Daisuke Kawae, Satoshi Kobayashi
  • Publication number: 20100244031
    Abstract: The drain voltage of a transistor is determined depending on the driving voltage of an element connected to the transistor. With downsizing of a transistor, intensity of the electric field concentrated in the drain region is increased, and hot carriers are easily generated. An object is to provide a transistor in which the electric field hardly concentrates in the drain region. Another object is to provide a display device including such a transistor. End portions of first and second wiring layers having high electrical conductivity do not overlap with a gate electrode layer, whereby concentration of an electric field in the vicinity of a first electrode layer and a second electrode layer is reduced; thus, generation of hot carriers is suppressed. In addition, one of the first and second electrode layers having higher resistivity than the first and second wiring layers is used as a drain electrode layer.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 30, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kengo AKIMOTO, Hiromichi GODO, Akiharu MIYANAGA
  • Publication number: 20100237418
    Abstract: It is an object of the present invention to manufacture a thin film transistor having a required property without complicating steps and devices. It is another object of the present invention to provide a technique for manufacturing a semiconductor device having high reliability and better electrical characteristics with a higher yield at lower cost. In the present invention, a lightly doped impurity region is formed in a source region side or a drain region side of a semiconductor layer covered with a gate electrode layer in a thin film transistor. The semiconductor layer is doped diagonally to the surface thereof using the gate electrode layer as a mask to form the lightly doped impurity region. Therefore, the properties of the thin film transistor can be minutely controlled.
    Type: Application
    Filed: June 3, 2010
    Publication date: September 23, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Atsuo ISOBE, Tetsuji YAMAGUCHI, Hiromichi GODO
  • Publication number: 20100230754
    Abstract: An object is to provide a semiconductor device which solves a problem that can occur when a substrate having an insulating surface is used. The semiconductor device includes a base substrate having an insulating surface; a conductive layer over the insulating surface; an insulating layer over the conductive layer; a semiconductor layer having a channel formation region, a first impurity region, a second impurity region, and a third impurity region provided between the channel formation region and the second impurity region over the insulating layer; a gate insulating layer configured to cover the semiconductor layer; a gate electrode over the gate insulating layer; a first electrode electrically connected to the first impurity region; and a second electrode electrically connected to the second impurity region. The conductive layer is held at a given potential.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 16, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Atsuo Isobe, Hiromichi Godo, Satoshi Shinohara
  • Publication number: 20100219410
    Abstract: An object is to reduce to reduce variation in threshold voltage to stabilize electric characteristics of thin film transistors each using an oxide semiconductor layer. An object is to reduce an off current. The thin film transistor using an oxide semiconductor layer is formed by stacking an oxide semiconductor layer containing insulating oxide over the oxide semiconductor layer so that the oxide semiconductor layer and source and drain electrode layers are in contact with each other with the oxide semiconductor layer containing insulating oxide interposed therebetween; whereby, variation in threshold voltage of the thin film transistors can be reduced and thus the electric characteristics can be stabilized. Further, an off current can be reduced.
    Type: Application
    Filed: February 17, 2010
    Publication date: September 2, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hiromichi GODO, Kengo AKIMOTO, Shunpei YAMAZAKI
  • Patent number: 7786485
    Abstract: A thin-film transistor includes a pair of impurity semiconductor layers in which an impurity element imparting one conductivity type is added to form a source and drain regions so as to be overlapped at least partly with a gate electrode with a gate insulating layer interposed between the gate electrode and the impurity semiconductor layers; a pair of conductive layers which is overlapped over the gate insulating layers at least partly with the gate electrode and the impurity semiconductor layers, and is disposed with a space therebetween in a channel length direction; and an amorphous semiconductor layer which is in contact with the gate insulating layer and the pair of conductive layers and is extended between the pair of conductive layers.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: August 31, 2010
    Assignee: Semicondutor Energy Laboratory Co., Ltd.
    Inventors: Koji Dairiki, Hidekazu Miyairi, Yoshiyuki Kurokawa, Shunpei Yamazaki, Hiromichi Godo, Daisuke Kawae, Satoshi Kobayashi
  • Publication number: 20100207117
    Abstract: An object is to suppress deterioration in electric characteristics in a transistor including an oxide semiconductor layer or a semiconductor device including the transistor. In a transistor in which a channel layer is formed using an oxide semiconductor, a silicon layer is provided in contact with a surface of the oxide semiconductor layer, an impurity semiconductor layer is provided over the silicon layer, and a source electrode layer and a drain electrode layer are provided to be electrically connected to the impurity semiconductor layer.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 19, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junichiro SAKATA, Hiromichi GODO, Takashi SHIMAZU