Patents by Inventor Hiromichi Kameyama

Hiromichi Kameyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9279313
    Abstract: There are provided a carbon dioxide storage apparatus and a carbon dioxide storage method which, through direct injection of carbon dioxide into an underground brine aquifer, can store carbon dioxide efficiently in the brine aquifer. A filter formed of, for example, grindstone is provided at a tip portion of an injection well. A pumping apparatus pumps carbon dioxide stored in a carbon dioxide tank. The pumping apparatus feeds carbon dioxide from the carbon dioxide tank into the injection well by means of a pump. In the pumping apparatus, carbon dioxide is held within a predetermined pressure range and a predetermined temperature range. Carbon dioxide is fed through the injection well, and is injected into a brine aquifer. Carbon dioxide injected into the brine aquifer assumes the form of microbubbles.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: March 8, 2016
    Assignee: TOKYO GAS CO., LTD.
    Inventors: Hiromichi Kameyama, Susumu Nishio, Ziqiu Xue, Toshifumi Matsuoka
  • Publication number: 20150122476
    Abstract: There are provided a carbon dioxide storage apparatus and a carbon dioxide storage method which, through direct injection of carbon dioxide into an underground brine aquifer, can store carbon dioxide efficiently in the brine aquifer. A filter formed of, for example, grindstone is provided at a tip portion of an injection well. A pumping apparatus pumps carbon dioxide stored in a carbon dioxide tank. The pumping apparatus feeds carbon dioxide from the carbon dioxide tank into the injection well by means of a pump. In the pumping apparatus, carbon dioxide is held within a predetermined pressure range and a predetermined temperature range. Carbon dioxide is fed through the injection well, and is injected into a brine aquifer. Carbon dioxide injected into the brine aquifer assumes the form of microbubbles.
    Type: Application
    Filed: December 15, 2014
    Publication date: May 7, 2015
    Inventors: Hiromichi KAMEYAMA, Susumu NISHIO, Ziqiu XUE, Toshifumi MATSUOKA
  • Patent number: 8998532
    Abstract: A carbon dioxide tank (3) is connected to a pump device (5). The pump device (5) is joined and connected with an infusion well (9), which is a tubular body. The infusion well (9) extends downward beneath the ground (7) and is provided so as to reach a saltwater aquifer (11). Part of the infusion well (9) forms a horizontal well (10) in a substantially horizontal direction. In other words, the horizontal well (10) is a location in which part of the infusion well (9) is formed in a substantially horizontal direction within a saltwater aquifer (11). The horizontal well (10) is provided with filters (13), which are porous members. For the filters (13), for example, a fired member in which ceramic particles are mixed with a binder that binds those particles can be used. Moreover, if the hole diameter for the filters (13) is small, microbubbles with a smaller diameter can be generated.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: April 7, 2015
    Assignee: Tokyo Gas Co., Ltd.
    Inventors: Ziqiu Xue, Susumu Nishio, Hiromichi Kameyama, Koji Yoshizaki
  • Patent number: 8939223
    Abstract: There are provided a carbon dioxide storage apparatus and a carbon dioxide storage method which, through direct injection of carbon dioxide into an underground brine aquifer, can store carbon dioxide efficiently in the brine aquifer. A filter formed of, for example, grindstone is provided at a tip portion of an injection well. A pumping apparatus pumps carbon dioxide stored in a carbon dioxide tank. The pumping apparatus feeds carbon dioxide from the carbon dioxide tank into the injection well by means of a pump. In the pumping apparatus, carbon dioxide is held within a predetermined pressure range and a predetermined temperature range. Carbon dioxide is fed through the injection well, and is injected into a brine aquifer. Carbon dioxide injected into the brine aquifer assumes the form of microbubbles.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: January 27, 2015
    Assignee: Tokyo Gas Co., Ltd.
    Inventors: Hiromichi Kameyama, Susumu Nishio, Ziqiu Xue, Toshifumi Matsuoka
  • Patent number: 8684085
    Abstract: A filter (13) is provided at a tip portion of an injection well (9). A pumping apparatus (5) pumps carbon dioxide stored in a carbon dioxide tank (3). The pumping apparatus (5) feeds carbon dioxide from the carbon dioxide tank (3) into the injection well (9) by means of a pump. In the pumping apparatus, the pressure and temperature of carbon dioxide are maintained at respective predetermined levels or higher by means of a pressure regulation valve, a temperature regulator, etc., whereby carbon dioxide enters a supercritical state. The carbon dioxide having entered a supercritical state is fed in the direction of arrow A through the injection well (9), passes through the filter (13) provided at an end portion of the injection well (9), and is injected into a brine aquifer (11). Carbon dioxide injected into the brine aquifer (11) assumes the form of microbubbles.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: April 1, 2014
    Assignee: Tokyo Gas Co., Ltd.
    Inventors: Hiromichi Kameyama, Susumu Nishio, Ziqiu Xue, Toshifumi Matsuoka
  • Publication number: 20140072369
    Abstract: A carbon dioxide tank (3) is connected to a pump device (5). The pump device (5) is joined and connected with an infusion well (9), which is a tubular body. The infusion well (9) extends downward beneath the ground (7) and is provided so as to reach a saltwater aquifer (11). Part of the infusion well (9) forms a horizontal well (10) in a substantially horizontal direction. In other words, the horizontal well (10) is a location in which part of the infusion well (9) is formed in a substantially horizontal direction within a saltwater aquifer (11). The horizontal well (10) is provided with filters (13), which are porous members. For the filters (13), for example, a fired member in which ceramic particles are mixed with a binder that binds those particles can be used. Moreover, if the hole diameter for the filters (13) is small, microbubbles with a smaller diameter can be generated.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 13, 2014
    Applicant: TOKYO GAS CO., LTD.
    Inventors: Ziqiu Xue, Susumu Nishio, Hiromichi Kameyama, Koji Yoshizaki
  • Publication number: 20120118586
    Abstract: There are provided a carbon dioxide storage apparatus and a carbon dioxide storage method which, through direct injection of carbon dioxide into an underground brine aquifer, can store carbon dioxide efficiently in the brine aquifer. A filter formed of, for example, grindstone is provided at a tip portion of an injection well. A pumping apparatus pumps carbon dioxide stored in a carbon dioxide tank. The pumping apparatus feeds carbon dioxide from the carbon dioxide tank into the injection well by means of a pump. In the pumping apparatus, carbon dioxide is held within a predetermined pressure range and a predetermined temperature range. Carbon dioxide is fed through the injection well, and is injected into a brine aquifer. Carbon dioxide injected into the brine aquifer assumes the form of microbubbles.
    Type: Application
    Filed: August 11, 2010
    Publication date: May 17, 2012
    Applicant: TOKYO GAS CO., LTD.
    Inventors: Hiromichi Kameyama, Susumu Nishio, Ziqiu Xue, Toshifumi Matsuoka
  • Publication number: 20110223500
    Abstract: Disclosed is an MCFC power generation system and a method for operating the same enabling significant reduction of CO2 emission or substantially zero CO2 emission by minimizing the equipment added to a general power generation facility to a minimum, enabling both high power generation efficiency and high heat recovery efficiency, enabling adjustment of the voltage and output of the fuel cell in a certain range by adjusting the cathode gas composition, enabling great variation of the ratio between the heat and electricity, and thereby enabling variable thermoelectric operation. The MCFC generation system includes a cathode gas circulation system in which the cathode gas is circulated by a cathode gas recycle blower, and a closed loop is formed. Oxygen consumed by power generation is supplied from an oxygen supply plant, and CO2 is supplied from recycled CO2. Combustible components in anode exhaust are burned with oxygen, the resultant gas is cooled, and water is removed.
    Type: Application
    Filed: November 16, 2009
    Publication date: September 15, 2011
    Applicant: TOKYO GAS CO., LTD.
    Inventors: Hiroyoshi Uematsu, Akimune Watanabe, Hiromichi Kameyama
  • Publication number: 20110223501
    Abstract: Provided is a hydrogen-recycling MCFC power-generating system that can improve power generation efficiency by effectively utilizing fuel gas having the hydrogen included in anode exhaust as the main component, and that can reduce the amount of carbon dioxide discharged by separating and recovering the carbon dioxide. The system is provided with a molten carbonate fuel cell (9), a carbon dioxide separating system (20) that separates and recovers a portion of the carbon dioxide from the anode exhaust (AE) from the fuel cell, a gas mixer that mixes recycled fuel gas (RF) after a portion of the carbon dioxide has been separated from the anode exhaust with new fuel gas (F) that is supplied from outside to make a mixed fuel gas (MF), a fuel gas heater (13) that diverts a portion of the mixed fuel gas, preheats it to a constant temperature and adds reforming steam (STM), and a multistage pre-converter (14) that performs a reforming reaction and a methanation reaction of the mixed fuel gas simultaneously.
    Type: Application
    Filed: November 16, 2009
    Publication date: September 15, 2011
    Applicant: TOKYO GAS CO., LTD.
    Inventors: Hiroyoshi Uematsu, Hiromichi Kameyama, Akimune Watanabe
  • Publication number: 20110139455
    Abstract: A filter (13) is provided at a tip portion of an injection well (9). A pumping apparatus (5) pumps carbon dioxide stored in a carbon dioxide tank (3). The pumping apparatus (5) feeds carbon dioxide from the carbon dioxide tank (3) into the injection well (9) by means of a pump. In the pumping apparatus, the pressure and temperature of carbon dioxide are maintained at respective predetermined levels or higher by means of a pressure regulation valve, a temperature regulator, etc., whereby carbon dioxide enters a supercritical state. The carbon dioxide having entered a supercritical state is fed in the direction of arrow A through the injection well (9), passes through the filter (13) provided at an end portion of the injection well (9), and is injected into a brine aquifer (11). Carbon dioxide injected into the brine aquifer (11) assumes the form of microbubbles.
    Type: Application
    Filed: August 12, 2009
    Publication date: June 16, 2011
    Applicant: TOKYO GAS CO., LTD.
    Inventors: Hiromichi Kameyama, Susumu Nishio, Ziqiu Xue, Toshifumi Matsuoka